Codon Optimized Genes for Subunit Vaccines

Available for licensing from the NIH are gene constructs that express immunogenic proteins based on viral genes that have been optimized for expression in mammalian cells. Using vaccine vectors expressing respiratory syncytial virus (RSV) proteins from the optimized genes, this technology was shown to result in a potent RSV-specific cellular immune responses with favorable phenotypic patterns. This technology was shown to generate a superior immune (both humoral and cellular) response when utilized as part of a heterologous vector prime-boost regimen.

High Level Expression and Purification of Untagged and Histidine-tagged Human Immunodeficiency Virus Type-1 Reverse Transcriptase

Human immunodeficiency virus type-1 reverse transcriptase (HIV-1 RT) gene encodes 560 amino acids. In the virus, however, HIV-1 RT occurs as a dimer of two related polypeptides, p66 and p51 subunits at a molar ratio of 1:1. The p51 subunit is derived from a C-terminal proteolytic cleavage of the p66 subunit. This invention describes a simplified protocol to purify large quantities of histidine-tagged and untagged heterodimeric forms of human immunodeficiency virus type-1 reverse transcriptase (HIV-1 RT) from Escherichia coli.

Immunotoxin with in-vivo T cell Suppressant Activity

The invention concerns immunotoxins and methods of using the immunotoxins for the treatment of autoimmune diseases and T cell malignancies. The immunotoxins are targeted via an antibody that is specific to T cells. This allows the specific ablation of malignant T cells and resting T cells. The transient ablation of resting T cells can "reset" the immune system by accentuating tolerizing responses. The toxin portion of the immunotoxin is genetically engineered to maintain bioactivity when recombinantly produced in Pichia pastoris.

Diagnostic and Therapeutic Use of Brother of the Regulator of Imprinted Sites (BORIS) Alternative Splice Forms

This technology identifies twenty five (25) new alternatively spliced transcripts of the BORIS gene. The transcripts lead to the expression of seventeen different protein isoforms with variable N- and C-termini encoded by BORIS gene locus. Differential expression levels of BORIS isoforms were observed in different cancers. While some BORIS alternative splice variants were expressed at different levels in all types of cancers, other expressed forms are specific to particular cancer(s).

Methods of Inducing Immune Tolerance Using Immunotoxins

The invention concerns immunotoxins and methods of using the immunotoxins for the treatment of rejection response in a patient, including graft-versus-host disease and transplantation of organs, tissues and cells into a host. In a specific embodiment of the invention, the transplant involves pancreatic islet cells. The immunotoxins are targeted via an antibody that is specific to T cells. This allows the specific ablation of resting T cells, resulting in an accentuation of immune tolerizing responses and an increased tolerance to transplants and grafts.

Total Emission Detection System for Multi-Photon Microscopy

Available for licensing and commercial development is a novel two-photon microscope system, which would allow improved fluorescent light collection, the use of less excitation power and deeper penetration of tissue and isolated cells. Multi-photon fluorescence microscopy (MPFM) is an imaging technique that can investigate biological processes to sub-cellular resolution at depths of hundreds of microns below the surface of biological tissues.

Methods for Expression and Purification of Immunotoxins

The invention concerns immunotoxins and methods of making the immunotoxins. Targeting of the immunotoxins occurs via an antibody that is specific to T cells. This allows the specific ablation of malignant T cells and resting T cells. The transient ablation of resting T cells can "reset" the immune system by accentuating tolerizing responses. As a result, the immunotoxin can be used to treat autoimmune disease, malignant T cell-related cancers, and graft-versus-host disease.

Development of Dengue Virus Type 3 Vaccine Candidates

The disease burden associated with dengue virus infection has increased over the past several decades in the tropical and semi-tropical regions of the world, where over 2 billion people live at risk of dengue infection. Annually, there are an estimated fifty (50) to one hundred (100) million cases of dengue fever, making development of an effective vaccine a priority. In addition, there is a need for a "travelers vaccine" to protect those visiting dengue virus endemic areas, similar in scope to other currently available "travelers vaccines", such as hepatitis A vaccine.