A Genetic System in Yeast for Functional Identification of Human p53 Mutations

Mutations in the p53 gene are associated with 50% of all cancers and nearly 80% of the p53 mutations are missense changes. We have developed genetic assays based in yeast that can functionally categorize expressed p53 mutant proteins. The combined assays are referred to as the FIP53 system. Because human p53 cDNA can be conveniently cloned in yeast, the FIP53 system provides a rapid and sophisticated system for the functional analysis of p53 mutants. Four categories of mutations have already been identified.

Tristetraprolin (TTP) Plasmid Vectors for Human and Mouse TTP

Tristetraprolin (TTP) is involved in the physiological regulation of the secretion of at least two important cytokines, tumor necrosis factor alpha (TNF) and granulocyte-macrophage colony-stimulating factor (GM-CSF). TTP exerts its effects by directly binding to the mRNAs encoding these proteins and destabilizing them, resulting in less secretion. Conversely, TTP deficiency results in an excess of both cytokines, leading to a systemic inflammatory syndrome.

SIRT1 KO Human Cell Lines Generated by CRISPR/Cas9-mediated DNA Editing

SIRT1, a NAD+-dependent protein deacetylase, is the most conserved member of the sirtuins family. Through deacetylation of a number of protein substrates that are important transcription factors or co-factors, SIRT1 regulates many vital biological processes such as metabolism, cellular stress response, stem cell pluripotency, and development.

Mouse Model for Study of Diabetic Nephropathy and Role of Soluble Epoxide Hydrolase

Diabetic nephropathy (DN) is the leading cause of renal failure and is characterized by proteinuria that progresses to renal inflammation and decline in the glornerular filtration barrier (GFB). Podocytes are specialized epithelia cells in the glomerular capsule that have a role in filtration of blood and maintaining the integrity of the GFB; dysfunction of these cells plays a significant role in the pathogenesis of DN. Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has beneficial effects in inflammatory diseases.

Mice with a Floxed Allele of the alpha Subunit of the Heterotrimeric G Protein Go or Gi2

Heterotrimeric G proteins couple signals between GPCRs (G protein coupled receptors) and effectors such as adenylyl cyclase, phospholipase C and ion channels. Among the G proteins are Go and Gi2. Go is highly expressed in the brain and some endocrine tissues while Gi2 is widely expressed throughout the body. The ß?-subunits of Go interact with ion channels, and the a subunit has been shown to inhibit adenylyl cyclase. However a physiological role of the Gi2a has not been determined in a tissue specific manner.

Materials And Methods For Detection And Treatment Of Insulin Dependent Diabetes

Insulin-dependent diabetes mellitus (IDDM) affects close to one million people in the United States. It is an autoimmune disease in which the immune system produces antibodies that attack the body's own insulin-manufacturing cells in the pancreas. Patients require daily injections of insulin to regulate blood sugar levels. The invention identified two proteins, named IA-2 and IA-2beta, that are important markers for type I (juvenile, insulin-dependent) diabetes. IA-2/IA-2beta, when used in diagnostic tests, recognized autoantibodies in 70 percent of IDDM patients.

TRPC Knockout (KO) Mice and Mice with a Floxed Allele of TRPC Ion Channel Genes

TRPCs (Canonical Transient Receptor Potential Channels) are a group of non-selective cation channels that allow sodium and calcium into cells. There are seven different genes in mice that code TRPCs. The in vivo roles played by TRPCs as a whole are poorly understood and very little is known about the in vivo roles played by individual TRPCs nor the role of these channels in specific tissues or cells.

Software for Fully Automating Myocardial Perfusion Quantification

Software is has been developed and available for licensing that fully automates image processing for the quantification of myocardial blood flow (MBF) pixel maps from firstpass contrast-enhanced cardiac magnetic resonance (CMR) perfusion images. The system removes the need for laborious manual quantitative CMR perfusion pixel map processing and can process prospective and retrospective studies acquired from various imaging protocols. In full automation, arterial input function (AIF) images are processed for motion correction and myocardial perfusion images are corrected for intensity bias.

Alloreactive T Cell Depletion Method For Preventing Graft-Versus-Host Disease

The invention relates to the use of adenosine to deplete alloreactive T cells from donor grafts to prevent graft-versus-host disease (GVHD). The method includes culturing donor cells that include T cells with recipient antigen presenting cells (APCs) to form a mixture of cells. The recipient’s APCs activate donor T cells. The activated T cells are treated with high doses of adenosine or an adenosine-like molecule to decrease or inhibit viability of the activated donor T-cells.