Ixodes scapularis Tissue Factor Pathway Inhibitor

Ixodes scapularis is a blood-sucking tick and the principal vector of Lyme disease, a spirochetal illness caused by Borrelia burgdorferi and now the most common vector-borne infection in the United States; more than 50,000 cases have been reported during the last ten years. The salivary gland of I. scapularis has a number of pharmacologically active molecules that help the tick to successfully feed on blood, such as inhibitors of complement system, in addition to coagulation and platelet aggregation inhibitors.

Generation of Wild-Type Dengue Viruses for Use in Rhesus Monkey Infection Studies

Dengue virus is a positive-sense RNA virus belonging to the Flavivirus genus of the family Flaviviridae. Dengue virus is widely distributed throughout the tropical and semitropical regions of the world and is transmitted to humans by mosquito vectors. Dengue virus is a leading cause of hospitalization and death in children in at least eight tropical Asian countries.

Therapeutic Methods Based on In Vivo Modulation of the Production of Interferon gamma

The technology offered for licensing is in the field of Therapeutics. More specifically, the technology relates to biological ligands and their use as modulators of the production of Interferon gamma as a means to treat a broad spectrum of diseases. The invention describes and claims antibodies and other ligands that can stimulate Natural Killer (NK) immune cells to produce Interferon gamma which contributes to the combat against foreign pathogens.

MDCK Cells with Enhanced Characteristics for Vaccine and Virus Production

This technology relates to compositions and methods for improving the growth characteristics of cells engineered to produce live viruses such as the Influenza virus. Featured is a method that uses the gene candidate, siat7e, or its expressed or inhibited products in Madin Darby Canine Kidney (MDCK) cells. The gene expression modulates anchorage-dependence of the cell line thereby allowing scale-up on bioreactor platforms without the use of microcarrier beads and reducing production costs.

Vaccines Against Malarial Diseases

The invention offered for licensing is in the field of use of vaccines for malaria. The invention provides gene sequences encoding an erythrocyte binding protein of a malaria pathogen for the expression of the erythrocyte binding protein. The codon composition of the synthetic gene sequences approximates the mammalian codon composition. The synthetic gene sequences are useful for incorporation into DNA vaccine vectors, for the incorporation into various expression vectors for production of malaria proteins, or both.

Parvovirus B19 Codon Optimized Structural Proteins for Vaccine and Diagnostic Applications

Parvovirus B19 (B19V) is the only known pathogenic human parvovirus. Infection by this viral pathogen can cause transient aplastic crisis in individuals with high red cell turnover, pure red cell aplasia in immunosuppressed patients, and hydrops fetalis during pregnancy. In children, B19V most commonly causes erythema infectiosum, or fifth's disease. Infection can also cause arthropathy and arthralgia. The virus is very erythrotropic, targeting human erythroid (red blood) progenitors found in the blood, bone marrow, and fetal liver.

Full-Length Infectious cDNA Clones of Tick Borne Flavivirus

The tick-borne encephalitis virus complex of flavivirus family includes tick-borne encephalitis (TBEV), Kyasanur forest disease, Langat, Louping ill, Negishi, Omsk hemorrhagic fever and Povassan viruses. These viruses are endemic throughout most of the Northern Hemisphere and except for Langat, cause human disease of varying severity that can have mortality as high as 20 to 30%.

Novel Small Molecule Inhibitors for the Treatment of Huntington’s Disease

This technology is a collection of small molecules screened for their ability to prevent or reduce the cytotoxic effects of the protein, Huntingtin. Huntington's disease is a neurodegenerative disorder due to a dominantly acting expansion of a CAG trinucleotide repeat in exon 1 of the Huntington (HTT) gene resulting in production of the altered (mutant) protein Huntingtin, which has a long chain of polyglutamine (poly Q) attached to the exon 1 encoded protein sequence.

Multivalent Vaccines for Rabies Virus and Filoviruses

No vaccine candidates against Ebola virus (EBOV) or Marburg virus (MARV) are nearing licensure and the need to develop a safe and efficacious vaccine against filoviruses continues. Whereas several preclinical vaccine candidates against EBOV or MARV exist, their further development is a major challenge based on safety concerns, pre-existing vector immunity, and issues such as manufacturing, dosage, and marketability. The inventors have developed a new platform based on live or chemically inactivated (killed) rabies virus (RABV) virions containing EBOV glycoprotein (GP) in their envelope.

Protease Deficient Bacillus anthracis with Improved Recombinant Protein Yield Capabilities

Species of Bacillus, such as Bacillus anthracis, Bacillus cereus, and Bacillus subtilis, are attractive microorganisms for recombinant protein production in view of their fast growth rate, high yield, and ability to secrete produced products directly into the medium. Bacillus anthracis is also attractive in view of its ability to produce anthrax toxin and ability to fold proteins correctly. This application claims a B. anthracis strain in which more than one secreted protease is inactivated by genetic modification.