Device to Measure Muscle Contractile-Relaxant and Epithelial Bioelectric Responses of Perfused, Intact Tracheal Airways Tissue In Vitro

CDC and collaborative researchers have developed a device allowing for simultaneous measurement of smooth muscle contractile/relaxant activity and transepithelial potential difference (Vt) [or short circuit currents (Isc)] and resistance (Rt) within an intact airway in vitro. Investigation of the underlying mechanisms of lung diseases, such as asthma or cystic fibrosis, involves understanding the roles of airway smooth muscle and epithelium.

Physiologic Sampling Pump Capable of Rapidly Adapting to User Breathing Rate

This CDC developed physiologic sampling pump (PSP) overcomes shortcomings of previous devices by the use of calibrated valves in conjunction with a constant speed pump. This novel approach obviates typical PSP inertia that inherently limits system response, functionality and accuracy. All prior PSP designs have attempted to follow a user's breathing pattern by changing pump speed, thereby altering sampling rate. In that approach, pump inertia will limit system response and function due to the time required to adjust speed.

Ultrasonic in situ Respirator Seal-Leakage Detection with Real-time Feedback Capabilities

This CDC invention entails methods and apparatuses for in situ testing seal integrity and improved operation of respiratory masks (respirators). A variety of external factors, such as individual face shape, user environment, mask age and material used to construct the respirator, can lead to device malfunction and failure to sufficiently protect a user. To address these limitations, this invention relies on ultrasonic wave detection to assess face seal quality and other potential leak paths, as needed.

Auscultatory Training System and Telemedicine Tool with Accurate Reproduction of Physiological Sounds

This CDC developed auscultatory training apparatus includes a database of prerecorded physiological sounds (e.g., lung, bowel, or heart sounds) stored on a computer for playback. Current teaching tools, which utilize previously recorded sounds, suffer from the disadvantage that playback environments cause considerable distortion and errors in sound reproduction. For example, to those trainees using such systems, the reproduced respiratory sounds do not “sound” as if they are being generated by a live patient.

Computer Controlled Aerosol Generator with Multi-Walled Carbon Nanotube Inhalation Testing Capabilities

This invention pertains to a CDC developed sonic aerosol generator that provides a controllable, stable concentration of particulate aerosol over a long period of time for aerosol exposure studies. Specifically, in situ testing data indicate uniform aerosol stability can be maintainable for greater than 30 hours at concentrations of 15 mg/m3 or more. Additionally, the technology was specifically developed for, and validated in, animal studies assessing exposure to airborne multi-walled carbon nanotubes (MWCNT).

Local Positioning System for Position-Time-Condition Correlation, Data-logging and Analysis

This CDC-developed technology describes an automated system for monitoring worker hazard exposures by recording data about where and when hazards occur in a workplace or other environment. This allows the hazards to be avoided and harmful exposures and risks reduced. This field-tested technology consists of an integrated, hand-held electronics instrument and software system that will precisely correlate multiple exposure levels with position coordinates of the user and features real-time data acquisition.

Focused Electrostatic Collection of Aerosol Particles for Chemical Analysis by Spectroscopic Techniques

This CDC-developed technology is an aerosol preconcentration unit (APU) designed for use with spectroscopic detection techniques, including emission, Raman, or infrared spectroscopies. Most existing pulsed microplasma techniques, such as laser-induced breakdown, for aerosols rely mainly on filter-based collection and suffer from poor accuracy, precision, and detection limits and require long sample collection times.

Improved Acoustic Plethysmograph System for Noninvasive Measurement of Pulmonary Function

CDC researchers have developed a novel acoustic whole body plethysmograph (AWBP) that allows measurement of tidal volume in lab animals, independent of gas compression in the lung. This system provides particular advantages over the traditional whole body plethysmograph (WBP) when measuring model animals with increased gas compression due to increased airway resistance or increased acceleration in the breathing pattern.

Mobile Instrumentation for the Detection and Sampling of Aerosol Particles

Hazardous airborne particles pose a risk for health and safety in a variety of environments and thus detection of these small particles is essential. Current particle magnification systems are bulky and require a lot of power for operation, making them unsuitable to easily detect and analyze small particles in mobile and personal settings.