CXCR4 Reduction Leads to Enhancement of Engraftment of Hematopoietic Stem Cells

Methods of enhancing engraftment of donor hematopoietic stem cells (HSCs) by reducing expression or activity of CXCR4 in HSCs is described. HSC are the only cells in the bone marrow that are both pluripotent and long lived. Bone marrow transplantation (BMT) using HSC is an increasingly common medical therapy for severe hematologic cancers and primary hematologic immunodeficiencies. However, for significant HSC engraftment to occur there must usually be pre-transplant conditioning with either irradiation or chemotherapy or both.

T Cell-Based Adoptive Transfer Immunotherapy for Polyomavirus-Associated Pathologies

Available for licensing are methods to generate T cells responsive to multiple polyomaviruses. The resulting T cell populations could be useful in treating immunosuppressed individuals with polyomavirus infections or polyomavirus-associated pathologies such as Merkel cell carcinoma (MCC), polyomavirus-associated nephropathy (PVAN), hemorrhagic cystitis, progressive multifocal leukoencephalopathy (PML), and trichodysplasia spinulosa (TS). The methods could also be used to restore polyomavirus-specific immunity in immunocompromised individuals.

A Novel Therapeutic Vector for Hemoglobin Disorders

Investigators at the National Heart, Lung, and Blood Institute have designed a novel lentiviral vector as a potential gene therapy for sickle cell anemia and beta-thalassemia. The novel lentiviral vector encodes the beta-globin gene in a forward orientation and can produce 5-10 fold higher viral titer and 4-10 fold higher gene transfer efficiency to hematopoietic stem cells than reverse-oriented lentiviral vectors. In vivo studies conducted in rhesus macaques show beta-globin production after transplantation with this novel lentiviral vector.

Real-time RT-PCR assay for Detection of Live Attenuated Influenza Vaccine for A and B Viruses

Upon intranasal vaccination, live attenuated influenza vaccine (LAIV) viruses may replicate within the nose for several days. Current clinical diagnostic tests cannot distinguish between LAIV viruses and multiple influenza viruses in recently inoculated patients that present with respiratory symptoms. This poses a problem for the diagnosis and treatment of patients with respiratory symptoms, as these symptoms may not be caused by influenza. CDC researchers have developed a real-time RT-PCR assay to detect the presence of LAIV viruses.

A Genetic System in Yeast for Functional Identification of Human p53 Mutations

Mutations in the p53 gene are associated with 50% of all cancers and nearly 80% of the p53 mutations are missense changes. We have developed genetic assays based in yeast that can functionally categorize expressed p53 mutant proteins. The combined assays are referred to as the FIP53 system. Because human p53 cDNA can be conveniently cloned in yeast, the FIP53 system provides a rapid and sophisticated system for the functional analysis of p53 mutants. Four categories of mutations have already been identified.

SIRT1 KO Human Cell Lines Generated by CRISPR/Cas9-mediated DNA Editing

SIRT1, a NAD+-dependent protein deacetylase, is the most conserved member of the sirtuins family. Through deacetylation of a number of protein substrates that are important transcription factors or co-factors, SIRT1 regulates many vital biological processes such as metabolism, cellular stress response, stem cell pluripotency, and development.

Mouse Model for Study of Diabetic Nephropathy and Role of Soluble Epoxide Hydrolase

Diabetic nephropathy (DN) is the leading cause of renal failure and is characterized by proteinuria that progresses to renal inflammation and decline in the glornerular filtration barrier (GFB). Podocytes are specialized epithelia cells in the glomerular capsule that have a role in filtration of blood and maintaining the integrity of the GFB; dysfunction of these cells plays a significant role in the pathogenesis of DN. Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has beneficial effects in inflammatory diseases.

Mice with a Floxed Allele of the alpha Subunit of the Heterotrimeric G Protein Go or Gi2

Heterotrimeric G proteins couple signals between GPCRs (G protein coupled receptors) and effectors such as adenylyl cyclase, phospholipase C and ion channels. Among the G proteins are Go and Gi2. Go is highly expressed in the brain and some endocrine tissues while Gi2 is widely expressed throughout the body. The ß?-subunits of Go interact with ion channels, and the a subunit has been shown to inhibit adenylyl cyclase. However a physiological role of the Gi2a has not been determined in a tissue specific manner.

Materials And Methods For Detection And Treatment Of Insulin Dependent Diabetes

Insulin-dependent diabetes mellitus (IDDM) affects close to one million people in the United States. It is an autoimmune disease in which the immune system produces antibodies that attack the body's own insulin-manufacturing cells in the pancreas. Patients require daily injections of insulin to regulate blood sugar levels. The invention identified two proteins, named IA-2 and IA-2beta, that are important markers for type I (juvenile, insulin-dependent) diabetes. IA-2/IA-2beta, when used in diagnostic tests, recognized autoantibodies in 70 percent of IDDM patients.

TRPC Knockout (KO) Mice and Mice with a Floxed Allele of TRPC Ion Channel Genes

TRPCs (Canonical Transient Receptor Potential Channels) are a group of non-selective cation channels that allow sodium and calcium into cells. There are seven different genes in mice that code TRPCs. The in vivo roles played by TRPCs as a whole are poorly understood and very little is known about the in vivo roles played by individual TRPCs nor the role of these channels in specific tissues or cells.