Novel Genetic Tristetraprolin (TTP) Knock-in Mouse

Tristetraprolin (TTP) is the prototype member of a small family of RNA binding proteins that bind to specific types of AU-rich elements in the 3'UTRs of target mRNAs and promote their rapid turnover. One of the targets destabilized by TTP is Tumor necrosis factor alpha (TNF). TNF has long been a target of anti-inflammatory drug development, in which recombinant protein molecules based on TNF antibodies or TNF receptors have been used to bind directly to TNF and inactivate it.

Rabbit Antisera to Various Matrix, Matricellular, and Other Secreted Proteins

The extracellular matrix (ECM) is composed of a group of proteins that regulate many cellular functions, such as cell shape, adhesion, migration, proliferation, and differentiation. Deregulation of ECM protein production or function contributes to many pathological conditions, including asthma, chronic obstructive pulmonary disease, arthrosclerosis, and cancer. Scientists at the NIH have developed antisera against various ECM components such as proteoglycan, sialoprotein, collagen, etc.. These antisera can be used as research tools to study the biology of extracellular matrix molecules.

Immunological Detection of Free Radicals In Animals and In Vitro

Electron Spin Resonance (ESR) is an universal, specific tool for the detection of free radicals in biological systems. Its application to the investigation of free radicals from whole animals, organs, and cells has been made possible by the spin-trapping technique. In a Spin-trapping experiment, a spin trap such as DMPO (5,5-dimetryl-1-pyrroline N-oxide) reacts specifically with one or more types of free radical to form radical-derived nitrone adducts that are much more stable than the original free radicals.

SIRT1 KO Human Cell Lines Generated by CRISPR/Cas9-mediated DNA Editing

SIRT1, a NAD+-dependent protein deacetylase, is the most conserved member of the sirtuins family. Through deacetylation of a number of protein substrates that are important transcription factors or co-factors, SIRT1 regulates many vital biological processes such as metabolism, cellular stress response, stem cell pluripotency, and development.

Mouse Model for Study of Diabetic Nephropathy and Role of Soluble Epoxide Hydrolase

Diabetic nephropathy (DN) is the leading cause of renal failure and is characterized by proteinuria that progresses to renal inflammation and decline in the glornerular filtration barrier (GFB). Podocytes are specialized epithelia cells in the glomerular capsule that have a role in filtration of blood and maintaining the integrity of the GFB; dysfunction of these cells plays a significant role in the pathogenesis of DN. Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has beneficial effects in inflammatory diseases.

Mice with a Floxed Allele of the alpha Subunit of the Heterotrimeric G Protein Go or Gi2

Heterotrimeric G proteins couple signals between GPCRs (G protein coupled receptors) and effectors such as adenylyl cyclase, phospholipase C and ion channels. Among the G proteins are Go and Gi2. Go is highly expressed in the brain and some endocrine tissues while Gi2 is widely expressed throughout the body. The ß?-subunits of Go interact with ion channels, and the a subunit has been shown to inhibit adenylyl cyclase. However a physiological role of the Gi2a has not been determined in a tissue specific manner.

Materials And Methods For Detection And Treatment Of Insulin Dependent Diabetes

Insulin-dependent diabetes mellitus (IDDM) affects close to one million people in the United States. It is an autoimmune disease in which the immune system produces antibodies that attack the body's own insulin-manufacturing cells in the pancreas. Patients require daily injections of insulin to regulate blood sugar levels. The invention identified two proteins, named IA-2 and IA-2beta, that are important markers for type I (juvenile, insulin-dependent) diabetes. IA-2/IA-2beta, when used in diagnostic tests, recognized autoantibodies in 70 percent of IDDM patients.

TRPC Knockout (KO) Mice and Mice with a Floxed Allele of TRPC Ion Channel Genes

TRPCs (Canonical Transient Receptor Potential Channels) are a group of non-selective cation channels that allow sodium and calcium into cells. There are seven different genes in mice that code TRPCs. The in vivo roles played by TRPCs as a whole are poorly understood and very little is known about the in vivo roles played by individual TRPCs nor the role of these channels in specific tissues or cells.

Metallic Nanoparticles for Photothermal Therapy

The invention relates to the preparation and application of 20-150nm metallic nanoparticulate vesicles for photothermal anti-cancer therapy. The vesicles comprise metallic nanoparticles covalently bound to a hydrophilic and hydrophobic polymer. The preparation method generally entails dispersing a polymer-bound metallic nanoparticle in an organic solvent, adding an aqueous solution with a dispersing aid, sonicating the mixture, and finally removing the organic solvent until the vesicle forms.

Software for Fully Automating Myocardial Perfusion Quantification

Software is has been developed and available for licensing that fully automates image processing for the quantification of myocardial blood flow (MBF) pixel maps from firstpass contrast-enhanced cardiac magnetic resonance (CMR) perfusion images. The system removes the need for laborious manual quantitative CMR perfusion pixel map processing and can process prospective and retrospective studies acquired from various imaging protocols. In full automation, arterial input function (AIF) images are processed for motion correction and myocardial perfusion images are corrected for intensity bias.