Human Fibroblast Cell Lines from Patients with Gangliosidosis Diseases for the Screening of Disease Therapeutics

This technology includes cell lines from patients with gangliosidosis diseases for the screening of potential therapeutics. Gangliosidosis contains different types of lipid storage disorders caused by the accumulation of lipids known as gangliosides. GM1 gangliosidosis is an ultra-rare lysosomal storage disorder caused by mutations in galactosidase beta 1 (GLB1) that result in a deficiency of beta-galactosidase. GM2 gangliosidoses are a group of autosomal recessive lysosomal storage disorders caused by accumulation of GM2 ganglioside due to the absence or near absence of B-hexosamindase.

Human Serous Endometrial Cancer Cell Lines CRISPR-edited to knock-in FBXW7 mutations for Use in Cancer related Molecular and Cellular Studies

This technology includes endometrial cancer cell lines for use in molecular and cellular studies to determine the effects of cancer-associated FBXW7 (F-box and WD repeat domain-containing 7) mutations, including but not limited to biochemical studies, proteomic studies, and drug sensitivity/resistance studies. Clustered Regularly Interspaced Palindromic Repeats (CRISPR) editing was used to knock-in individual FBXW7 mutations into the ARK1 serous EC cell line, which lacks detectable endogenous FBXW7 mutation(s).

Human Fibroblast Cell Lines Heterozygous for Glucocerebrosidase (GBA1) Mutation N370S for the Study of Neurodegenerative Disorders and their Treatments

This technology includes six cell lines for the study of Glucocerebrosidase (GBA1) mutations which could be used for the evaluation and eventual treatments for conditions such as Gaucher's disease and Parkinson's disease. GBA1 is a lysosomal enzyme, responsible for breakdown of a fatty material called glucocerebroside (or glucosyl ceramide). Deficiency or malfunction of GBA1 leads to the accumulation of insoluble glucocerebrosides (derived mostly from ingested red and white blood cell membranes) in tissues, which is a major symptom of Gaucher disease.

Fibroblast Cell Lines Homozygous for Glucocerebrosidase (GBA1) Mutation N370S for the Screening of Small Molecules for Gaucher Disease Treatment

This technology includes two human fibroblast cell lines be used to study the defects in GBA1 gene and protein and to screen small molecules for involvement in Gaucher disease. Glucocerebrosidase (GBA1 or GCase or beta-glucosidase) is a lysosomal enzyme, responsible for breakdown of a fatty material called glucocerebroside (or glucosyl ceramide). Deficiency or malfunction of GBA1 leads to the accumulation of insoluble glucocerebrosides in tissues, which is a major symptom of Gaucher disease. Gaucher disease is a rare and heterogeneous disorder, caused by inherited genetic mutations in GBA1.

Mouse Model Created Using Glucocerebrosidase-Deficient Neuronal Cell Line to Study Gaucher Disease Pathophysiology and Evaluate New Therapies

This technology includes a high-yield, easy-to-culture mouse neuronal cell model with nearly complete glucocerebrosidase deficiency representative of Gaucher disease (GD) to study pathophysiology and evaluate new therapies. GD is an autosomal recessive lysosomal storage disorder caused by loss-of function mutations in the GBA1 gene, which codes for the lysosomal hydrolase glucocerebrosidase (GCase).

Three-Dimensional Respiratory Epithelial Tissue Constructs With Perfusable Microvasculature

The invention provides two vascularized, multi-chip models for the alveoli and the small airway. Both models comprise a perfusable three-dimensional (3D) microvascular network consisting of human primary microvascular endothelial cells, fibroblasts, and pericytes with a differentiated lung epithelial layer exposed at the air-liquid interface (ALI) on top, built on a high-throughput, 64-chip microfluidic plate platform. The platform does not require the support of a permeable membrane and the epithelial cells are directly seeded on the perfused microvascular network.

Lymphoblastoid Cell Lines with a Specific Allele of ABCA7 Gene for the Screening of Small Molecules for Therapeutic Development

This technology includes lymphoblastoid cell lines from individuals genotyped as carrying the minor (G) allele of ABCA7 SNP rs113809142 [ss491752998; SNV-chr19-1007244], to be used for small molecule screening and eventual therapeutic development. The ABCA7 gene is the ATP-binding cassette, sub-family A (ABC1), member 7. It encodes a protein that is a transporter and has been associated with such diseases as neonatal respiratory failure and Asperger's syndrome. It is also known to play a role in phagocytosis of apoptotic cells by macrophages and may mediate cholesterol efflux.

Mouse Model of Hutchinson-Gilford Progeria Syndrome (HGPS) and Vascular Abnormalities (G608G) mutated form of human LNMA) for Therapeutic Development

Children with Hutchinson-Gilford progeria syndrome (HGPS) suffer from acceleration of certain aging symptoms, mainly cardiovascular disease that generally leads to death from myocardial infarction and/or stroke. The cause of HGPS has been discovered to be a de novo point mutation in lamin A (LNMA) gene. NHGRI Scientist have generated a transgenic mouse model of HGPS. This mouse carries a bacterial artificial chromosome (BAC) with a De novo mutation 1824 C to T (G608G) mutated form of human LNMA.

Human Cell Lines with NGLY1 Mutations for the Study of NGLY1 Deficiency and Therapeutic Development

Congenital disorders of glycosylation (CDGs) are a group of inborn errors characterized by abnormalities in the process of glycosylation of biomolecules. Although more than 100 different CDGs have been reported, only one has been thoroughly described, namely NGLY1 deficiency or NGLY1-CDG. NGLY1 encodes N-glycanase 1, an enzyme involved in the cytosolic degradation of misfolded glycoproteins and other glycoproteins bound for degradation.

First-in-class Small Molecule Agonists of the Insulin-like (INSL3) Peptide Receptor RXFP2 and Uses in Bone Disorders and Fertility

Recent studies have identified the G-protein-coupled receptor (GPCR) for insulin-like 3 peptide (INSL3), relaxin family peptide receptor 2 (RXFP2), as an attractive target for the treatment of bone diseases such as osteoporosis and rare bone diseases such as osteogenesis imperfecta. Currently, the most effective available treatment for osteoporosis is an expensive hormone therapy that requires daily injections. A stable, orally deliverable drug is a much more desirable alternative. Our RXFP2 agonists perform as well as the natural ligand INSL3 in cellular assays.