Anti-Py1235-Met Immunological Binding Reagent as Cancer Diagnostic

This technology consists of highly specific rabbit monoclonal antibodies reactive with phosphorylated tyrosine located at amino acid 1235 in the human MET sequence. Binding to this pYl235 residue is independent of the phosphorylation of other tyrosines in the vicinity (1230 and 1234), does not cross-react with these nearby phosphotyrosine residues, and does not occur when Y1235 is unphosphorylated.

Biomarker signature development: microRNAs for biodosimetry

Alterations in microRNAs (miRNAs), a type of small non-coding RNAs, have been reported in cells/tumors subjected to radiation exposure, implying that miRNAs play an important role in cellular stress response to radiation. NCI researchers evaluated small non-coding RNAs, long non-coding RNAs (lncRNA), and mRNA, as potential non-invasive biomarkers for radiation biodosimetry. While the use of miRNAs as radiation biomarkers has been reported, the integrated use of miRNAs, mRNAs and lncRNAs to accurately determine radiation doses is novel and has not been published.

Radiographic Marker for Portable Chest and Abdominal X-Rays

The NIH Clinical Center seeks parties interested to license a method and apparatus that can significantly improve the diagnostic performance of portable chest (CXR) and abdominal x-rays.  This device (see image below) quantifies angulation of a patient to provide for a better comparison of day-to-day improvement. Potential applications include portable chest and abdominal x-rays performed at patient's hospital bedside.

Development Status:

GTF2I Mutations as a Genetic Marker for Prognosis of Thymic Malignancies

Thymoma and thymic carcinomas are a rare and poorly understood group of malignancies.   Despite the growing number of biomarkers that are used for diagnosing and treating carcinomas in general, cancers of the thymus are still diagnosed, stratified and treated by a costly combination of histology, surgery and radiological procedures.  The lack of qualified biomarkers associated with thymomas and thymic carcinomas has also hampered the development of targeted therapies.