Identification and Use of Heterocyclic Alcohol Compounds for the Treatment of SULT1A1-expressing Cancers

This technology includes the identification and use of heterocyclic alcohol compounds, including RITA and N-BIC, for the treatment of SULT1A1-expression cancers. A high-throughput screen (qHTS) was performed using >1,000 caner cell lines identified a compound called YC-1 (also called Lificiguat) that is effective across cancer cell types that express the phase 2 detoxifying enzyme SULT1A1.

A Method for the Measurement of Cellular FMRP Levels for High Throughput Screening and Diagnosis of Fragile X Syndrome

This technology includes a precise measurement assay of cellular FMRP levels in patients, which can assist in the diagnosis and assess the severity of Fragile X syndrome (FXS). FXS is an X-linked disorder that produces intellectual disability, cognitive impairment, epilepsy, depression and anxiety. FXS is caused by mutations in the Fragile X Mental Retardation-1 (FMR1) gene that result in the absence or a loss of function of its protein product, FMRP.

Sensor for Real-time Detection of Plasma Metabolites Levels for the Diagnosis and Care of Metabolic Disorders

This technology includes the development of devices capable of real-time evaluation of metabolite levels for the treatment of numerous metabolic disorders, including hyperammonemia and aminoacidopathies. Currently, the monitoring of metabolite levels is done in a hospital setting with specialized mass spectrometry instrumentation. As a consequence, susceptible patients who are undergoing a crisis need to visit the hospital for testing to determine if there is a metabolite disturbance.

Mouse Model of Cobalamin A (cblA) Class Isolated Methylmalonic Acidemia (MMA) to Study New Therapies

Isolated Methylmalonic Acidemia (MMA) comprises a relatively common and heterogeneous group of inborn errors of metabolism. Most affected individuals display severe multisystemic disease characterized by metabolic instability, chronic renal disease, and neurological complications. Patients with the cobalamin A (cblA) subtype of MMA can have variable presentations, spanning the full spectrum of MMA associated symptoms and pathology, yet always harbor an element of clinical and biochemical responsiveness to injectable vitamin B12.

Non-invasive Isotopic Biomarkers that Predict the Response to Liver Directed Therapy in Methymalonic Acidemia (MMA) and Propionic Acidemia (PA)

Isolated Methylmalonic Acidemia (MMA) comprises a relatively common and heterogeneous group of inborn errors of metabolism. The most common cause of isolated MMA is genetic deficiency of the enzyme methylmalonyl-coA mutase (MUT), which, unfortunately for the affected patients, is also the most clinically severe. NHGRI scientist have invented a series of assays to assess hepatic MUT activity using a stable isotopic tracing assays to measure MUT function to assess corrective therapy on hepatic mitochondrial function.

Serum Protein Biomarkers that Predict the Response to Liver Directed Therapy in Methymalonic Acidemia (MMA) and Propionic Acidemia (PA)

Isolated Methylmalonic Acidemia (MMA) comprises a relatively common and heterogeneous group of inborn errors of metabolism. The most common cause of isolated MMA is genetic deficiency of the enzyme methylmalonyl-coA mutase (MUT), which, unfortunately for the affected patients, is also the most clinically severe. NHGRI scientist have discovered biomarkers previously described cytokines that has never been associated with MMA or propionic acidemia (PA) such as FGF-21 (fibroblast like-growth factor - 21).

Human Fibroblast Cell Lines from Patients with Gangliosidosis Diseases for the Screening of Disease Therapeutics

This technology includes cell lines from patients with gangliosidosis diseases for the screening of potential therapeutics. Gangliosidosis contains different types of lipid storage disorders caused by the accumulation of lipids known as gangliosides. GM1 gangliosidosis is an ultra-rare lysosomal storage disorder caused by mutations in galactosidase beta 1 (GLB1) that result in a deficiency of beta-galactosidase. GM2 gangliosidoses are a group of autosomal recessive lysosomal storage disorders caused by accumulation of GM2 ganglioside due to the absence or near absence of B-hexosamindase.

SARS-CoV-2 Neutralizing Antibodies and Synthetic Nanobody Library Using a Humanized Llama Framework Region

NCATS has developed a highly diverse synthetic library that will allow for the rapid identification of novel nanobodies that bind to a wide arrange of target antigens. The humanized framework used to construct the library will facilitate the transition of lead candidates into patient studies. Several highly potent SARS-CoV-2 nanobodies (antibodies) have been identified and are available for further development.

NCATS is actively seeking licensing for the 1) a synthetic library and 2) the potent neutralizing antibodies with activity against SARS-CoV-2.

Monoclonal Antibodies for the Recognition of Oncogene Fusions and Alveolar Rhabdomyosarcoma (ARMS) Diagnosis

This technology includes monoclonal antibody (mAb) that binds to the junction region of the PAX3-FOXO1 and PAX7-FOXO1 fusion protein for the diagnosis of Alveolar Rhabdomyosarcoma (ARMS). Specifically, two monoclonal antibodies (PFM.1 and PFM.2) have been isolated that recognize the 92kDa bands found uniquely to the pediatric striated muscle tumors of the type Alveolar Rhabdomyosarcoma (ARMS) carrying the characteristic t(2;13)(q35;q14) or t(1;13)(p36;q14) chromosomal translocations.

Staphylococcus Epidermidis Isolates from Human Skin Samples for Use as Clinical Molecular Markers

This technology includes a catalog of commensal and pathogenic staphylococci from human skin for utilization as clinical molecular markers of skin conditions and infections. The study of microbial diversity of human skin in both healthy and disease states is important to develop tools to track infections, outbreaks, and multi-drug resistant organisms, particularly in atopic dermatitis, eczema and other microbial-associated infections. Commensal skin S. epidermidis have an open pan-genome and show considerable diversity between isolates.