Mouse Model of Cobalamin A (cblA) Class Isolated Methylmalonic Acidemia (MMA) to Study New Therapies

Isolated Methylmalonic Acidemia (MMA) comprises a relatively common and heterogeneous group of inborn errors of metabolism. Most affected individuals display severe multisystemic disease characterized by metabolic instability, chronic renal disease, and neurological complications. Patients with the cobalamin A (cblA) subtype of MMA can have variable presentations, spanning the full spectrum of MMA associated symptoms and pathology, yet always harbor an element of clinical and biochemical responsiveness to injectable vitamin B12.

Non-invasive Isotopic Biomarkers that Predict the Response to Liver Directed Therapy in Methymalonic Acidemia (MMA) and Propionic Acidemia (PA)

Isolated Methylmalonic Acidemia (MMA) comprises a relatively common and heterogeneous group of inborn errors of metabolism. The most common cause of isolated MMA is genetic deficiency of the enzyme methylmalonyl-coA mutase (MUT), which, unfortunately for the affected patients, is also the most clinically severe. NHGRI scientist have invented a series of assays to assess hepatic MUT activity using a stable isotopic tracing assays to measure MUT function to assess corrective therapy on hepatic mitochondrial function.

Serum Protein Biomarkers that Predict the Response to Liver Directed Therapy in Methymalonic Acidemia (MMA) and Propionic Acidemia (PA)

Isolated Methylmalonic Acidemia (MMA) comprises a relatively common and heterogeneous group of inborn errors of metabolism. The most common cause of isolated MMA is genetic deficiency of the enzyme methylmalonyl-coA mutase (MUT), which, unfortunately for the affected patients, is also the most clinically severe. NHGRI scientist have discovered biomarkers previously described cytokines that has never been associated with MMA or propionic acidemia (PA) such as FGF-21 (fibroblast like-growth factor - 21).

Human Fibroblast Cell Lines from Patients with Gangliosidosis Diseases for the Screening of Disease Therapeutics

This technology includes cell lines from patients with gangliosidosis diseases for the screening of potential therapeutics. Gangliosidosis contains different types of lipid storage disorders caused by the accumulation of lipids known as gangliosides. GM1 gangliosidosis is an ultra-rare lysosomal storage disorder caused by mutations in galactosidase beta 1 (GLB1) that result in a deficiency of beta-galactosidase. GM2 gangliosidoses are a group of autosomal recessive lysosomal storage disorders caused by accumulation of GM2 ganglioside due to the absence or near absence of B-hexosamindase.

SARS-CoV-2 Neutralizing Antibodies and Synthetic Nanobody Library Using a Humanized Llama Framework Region

NCATS has developed a highly diverse synthetic library that will allow for the rapid identification of novel nanobodies that bind to a wide arrange of target antigens. The humanized framework used to construct the library will facilitate the transition of lead candidates into patient studies. Several highly potent SARS-CoV-2 nanobodies (antibodies) have been identified and are available for further development.

NCATS is actively seeking licensing for the 1) a synthetic library and 2) the potent neutralizing antibodies with activity against SARS-CoV-2.

Imaging Inflammation using PET Radioligands that Target Translocator Protein 18?kDa with High Affinity Regardless of Genotype

This technology includes a group of radioligands that label inflammatory cells specifically, accurately, and across different genotypes and can be detected using Positron Emission Tomography (PET). The radioligands target the Translocator protein 18 kDa (TSPO) receptor which is present on the outer mitochondrial membrane and is involved in the production of steroids. Current TSPO radioligands either lack specificity or have highly variable inter-subject sensitivities due to TSPO genotypic differences.

A Diagnostic Kit for Assessing Exposure or Infection by the Koala Family of Retroviruses

This invention relates to a diagnostic kit for assessing exposure to or infection by a koala retrovirus. The kit consists of specific primers and probes for the detection of three distinct subtypes of infectious koala retrovirus and may be useful in various species, including humans, primates, and koalas.

Imaging Inflammation using PET Radioligands that Target Translocator Protein 18?kDa with High Affinity Regardless of Genotype

This technology includes a group of radioligands that label inflammatory cells specifically, accurately, and across different genotypes and can be detected using Positron Emission Tomography (PET). The radioligands target the Translocator protein 18 kDa (TSPO) receptor which is present on the outer mitochondrial membrane and is involved in the production of steroids. Current TSPO radioligands either lack specificity or have highly variable inter-subject sensitivities due to TSPO genotypic differences.

Diagnosis and Treatment of Pediatric Acute Neurologic Syndrome with Antineuronal Antibodies

The invention is a panel of five tests of patient sera for immune responses that may attack the brain and lead to the characteristic symptoms of pediatric acute neurologic syndrome (PANS). PANS is a condition defined by a sudden onset of obsessive-compulsive symptoms, eating restrictions, and other cognitive and/or behavioral symptoms. Currently, the diagnosis of PANS is made when other possible symptoms are ruled out, a diagnosis of exclusion.

Detecting Levels of Chymotrypsin and Amylase using Rabbit Polyclonal Antibodies Generated from Purified Human Enzymes

The invention relates to rabbit antisera raised against purified human chymotrypsin and amylase. Both chymotrypsin and amylase are produced by the pancreas and play important roles in digestion. Abnormal levels of chymotrypsin and amylase have been known to occur with multiple pancreas-related disorders, including pancreatitis. Measuring levels of these two enzymes using these polyclonal antibodies can help determine if a pancreas is functioning correctly.