Real-Time PCR Assay for Specific Detection of Haemophilus influenzae Serotypes A and B

Haemophilus influenzae is responsible for life-threatening respiratory infections including meningitis. This assay allows for the qualitative detection of the bacterial meningitis pathogen H. influenzae serotype A (Hia) and serotype B (Hib) in fluid samples, without detecting any of the other serotypes of H. influenzae. This invention is capable of detecting even the very small numbers of Hia or Hib within clinical specimens.

Human Influenza Virus Real-time RT-PCR Detection and Characterization Panel

This invention relates to methods of rapidly detecting influenza, including differentiating between type and subtype. Unlike culture and serological tests requiring 5 to 14 days for completion, CDC researchers developed a rapid, accurate assay, which is easily adapted to kit form. This assay also requires less labor input than immunoassays. These methods can be used to quickly identify a broad variety of influenza types and subtypes, including viruses that may be involved in pandemics (such as H5N1, for example).

Use of Antisense Oligodeoxynucleotides for Inhibiting JC Virus

Progressive multifocal leukoencephalopathy (PML) is a rare, fatal demyelinating disease of the brain caused by the polyomavirus JC (JCV) under immunosuppressive conditions. It is pathologically characterized by progressive damage of white matter of the brain by destroying oligodendrocytes at multiple locations. Clinically, PML symptoms include weakness or paralysis, vision loss, impaired speech, and cognitive deterioration. The prognosis of PML is generally poor. No effective therapy for PML has been established.

Controlled Expression and Assembly of Human Group-C Rotavirus-like Particles for Creation of Rotavirus Diagnostic Assays and Improved Vaccine Formulations

CDC researchers have developed methods of producing unlimited quantities of Group-C (GpC) rotavirus antigens. GpC rotaviruses are a major, worldwide cause of acute gastroenteritis in children and adults that is distinct from Group-A rotavirus. However, GpC rotaviruses cannot be grown in culture, resulting in a lack of tools for detection and treatment of GpC rotavirus disease.

Vaccine Attenuation via Deoptimization of Synonymous Codons

Research scientists at CDC have developed compositions and methods that can be used to develop attenuated vaccines having well-defined levels of replicative fitness and enhanced genetic stabilities. Infections by intracellular pathogens, such as viruses, bacteria, and parasites, are cleared in most cases after activation of specific T-cell immune responses that recognize foreign antigens and eliminate infected cells. Vaccines against those infectious organisms traditionally have been developed by administration of whole live attenuated or inactivated microorganisms.

MDCK-based Reporter System for Detection of Influenza Viruses, Antiviral Drug Screening, and Analysis of Neutralizing Antibodies

CDC researchers have developed a Madin-Darby Canine Kidney (MDCK) reporter cell line that is exceptionally permissive for influenza virus replication and provides a highly specific, sensitive approach for the simultaneous detection and isolation of influenza viruses. Simplified antibody neutralization assays and high-throughput antiviral drug screening can also be easily and efficiently implemented using this reporter system.

A Novel Demodulation System in X-ray Imaging

In various x-ray imaging methods, including scattering correction and phase contrast imaging, intensity modulation in space is introduced into the projection images by the use of masks, gratings, or apertures. The present invention relates to a process to demodulate the modulation. The current demodulation processes are either to remove the modulation pattern through digital processing or to move the modulation pattern on the detector in a series of images that requires mechanical movements of a component and tends to lose some information of the imaged object.

A Novel X-ray Grating to Enhance Phase Contrast Imaging

The present invention relates to improving x-ray phase contrast imaging. The invention discloses a novel grating interferometer for phase contrast imaging with hard x-rays that overcomes limitations in the level of sensitivity by utilizing the advantages of far-field interferometers. The novel design and fabrication process can easily acquire absolute and differential phase images of lightly absorbing samples.

A Current Amplifier for Local Coil Pre-amplification of NMR/MRI Signals

The magnetic resonance imaging (MRI) systems are used for a variety of imaging application. The present invention discloses an improving MRI device and method by amplifying signals received by resonant NMR coils of MRI systems. It utilizes positive feedback from low-noise Field-Effect Transistor to amplify the signal current that can be coupled out to receiving loops positioned externally without loss in sensitivity. Therefore, the NMR coil can be flexibly positioned near internal tissues and used to develop high-resolution images in highly invasive situations.