Advanced Human Cell Line Technology for RSV Replication Complex Production and Antiviral Drug Discovery

This technology includes the NeurEx® mobile application, a groundbreaking tool designed for neurologists to conduct and document neurological examinations efficiently. Deployed on iPads, it integrates with a secure, cloud-based database, automating the computation of four key disability scales used in neuroimmunology. The app's robust design enables precise mapping of neurological deficits, blending spatial distribution with quantitative assessments.

Astrocyte Differentiation of Neural Stem Cells with StemPro Embryonic Stem Cell Serum Free Medium for Research and Potential Therapeutic Use

This technology includes an innovative method for differentiating astrocytes from neural stem cells (NSCs). The process involves using Life Technologies StemPro embryonic stem cell serum-free medium to initially guide NSCs towards a neuronal lineage. Over a period of 28-35 days, as the cells are continually passaged, neurons gradually die off, leading to the proliferation of astrocytes. By the end of this differentiation protocol, approximately 70% of the cells exhibit markers characteristic of mature astrocytes, specifically GFAP.

Characterization and Comparison of LAD2 and LADR Mast Cell Lines: Insights into Mastocytosis and HIV Infection

LAD2 and LADR cell lines are invaluable tools in mast cell research, offering insights into mastocytosis and immune responses. Derived from CD34+ cells, LAD2 cells have been extensively used for over 18 years, while LADR cells, a newer variant, exhibit enhanced characteristics such as larger size, increased granulation, and faster doubling time. Both cell lines release granular contents upon FceRI aggregation and can be infected with various strains of HIV. LADR cells, in particular, show greater expression of certain surface receptors and mRNA compared to LAD2 cells.

A Key Advancement for Human Norovirus Research and Reverse Genetics

The HEK293T/T7 cell line is a novel development in virology research, particularly for studying human noroviruses. This cell line expresses the T7 RNA polymerase, a key enzyme used in reverse genetics systems. Unlike existing technologies, the HEK293T/T7 cell line offers the unique advantage of being able to produce functional T7 RNA polymerase, which is essential for driving transcription from T7 promoters.

A Neural Stem Line from a Niemann Pick C (NPC) Type 1 Patient for Therapy Development

This technology includes a neural stem cell (NSC) line derived from a Niemann Pick C (NPC) patient, aimed at advancing research and drug development for NPC, an inherited neurodegenerative disorder characterized by the accumulation of cholesterol in neurons. The NSCs, which serve as a crucial intermediate cell type, can be differentiated into any neuronal or glial cell of the brain or spinal cord under appropriate culture conditions. These cells originate from fibroblasts reprogrammed into induced pluripotent stem cells.

Neural Stem Cells from an iPSC Line Ubiquitously Expressing Green Fluorescent Protein for Basic Science Research and Cell Line Tracking

This technology involves neural stem cells (NSCs) derived from pluripotent stem cells (PSCs) that can differentiate into neurons and glia. The key feature of this technology is the CY2 EEF1A1 GFP iPSC line, which includes a green fluorescent protein (GFP) expressed under the EEF1A1 promoter, leading to its ubiquitous expression in cells. This characteristic makes the NSCs and the neural cells differentiated from this line exhibit green fluorescence. Such cells, when transplanted into animal models like mice and rats, can be easily tracked due to their fluorescence.

Enhanced S10-3 Cell Line for Advanced Hepatitis E Virus Research and Therapeutic Development

The Huh-7 cell line underwent a detailed sub-cloning process to enhance its effectiveness for Hepatitis E Virus (HEV) infection studies. This involved diluting and culturing cells in 96-well plates until confluent monolayers formed, followed by selection and expansion of the most suitable cells. The sub-clone S10-3, derived from this process, was identified as the most efficient for transfection and infection by HEV.