Methods for Amelioration and Treatment of Pathogen-associated Inflammatory Response

This CDC invention provides methods for preventing or treating inflammatory response-linked, infection induced pathologies, which are mediated by endogenous substance P. Substance P is a naturally-occurring and major pro-inflammatory neuromediator or neuromodulator, and elevated levels of substance P have been implicated in numerous inflammation-associated diseases. More specifically, this technology entails administration of anti-substance P antibodies or anti-substance P antibody fragments to a subject in need, thereby inhibiting the activity of endogenous substance P.

Immunoassay for the Simultaneous Detection of Functional Antibodies against Multiple Serotypes of <em>Streptococcus pneumoniae</em> and Other Bacteria Types

Streptococcus pneumoniae, or pneumococcus, is a type of bacteria that causes pneumococcal disease. Pneumococcal infections can range from ear and sinus infections to pneumonia and bloodstream infections. Children younger than 2 years old and adults 65 years or older are among those most at risk for disease.

Generation of Anti-TAT FXN Polyclonal and Monoclonal Antibodies to TAT Domain for Use in Quantitating or Detecting TATFrataxin (TAT-FXN) and Analogs

This technology includes a strategy to generate antibodies of rabbit origin, both polyclonal and monoclonal, which have strong affinity to the TAT sequence and which enable specific immunocapture or immunodetection of TAT containing frataxin and analogs for quantitative or qualitative assays. In addition, antibodies that react with the FXN region have also been generated with this strategy. The HIV virus encoded a translational activator protein containing a 12 amino acid domain which permits transmembrane delivery of any therapeutic protein containing the sequence.

Monoclonal Antibodies for the Recognition of Oncogene Fusions and Alveolar Rhabdomyosarcoma (ARMS) Diagnosis

This technology includes monoclonal antibody (mAb) that binds to the junction region of the PAX3-FOXO1 and PAX7-FOXO1 fusion protein for the diagnosis of Alveolar Rhabdomyosarcoma (ARMS). Specifically, two monoclonal antibodies (PFM.1 and PFM.2) have been isolated that recognize the 92kDa bands found uniquely to the pediatric striated muscle tumors of the type Alveolar Rhabdomyosarcoma (ARMS) carrying the characteristic t(2;13)(q35;q14) or t(1;13)(p36;q14) chromosomal translocations.

MLL3 (KMT2C), MLL4, PA1, UTX And PTIP Antibodies for the Treatment of Development Diseases and Cancers

This technology includes polyclonal antibodies against MLL3 (KMT2C), MLL4, PA1, UTX And PTIP for the development of treatments for development diseases and cancer. Enhancers play a central role in cell-type-specific gene expression and are marked by H3K4me1/2. Active enhancers are further marked by H3K27ac. However, the methyltransferases responsible for H3K4me1/2 on enhancers remain elusive. Furthermore, how these enzymes function on enhancers to regulate cell-type-specific gene expression is unclear.

Replicating RNA Vaccine For Crimean-Congo Hemorrhagic Fever Virus

Crimean-Congo hemorrhagic fever (CCHF) is a deadly hemorrhagic fever having a high mortality rate. The disease results from infection of an individual by Crimean-Congo hemorrhagic fever virus (CCHFV), which is a tick-borne bunyavirus endemic in Southern and Eastern Europe, Africa, the Middle East, and Asia. Geographically, case distribution is consistent with the range of Hyalomma genus ticks, the main reservoir of CCHFV, and is likely to expand due to climate change. Humans may be infected from tick bites, through contact with infected animals or animal tissue.

Advancing VZV Antibody Detection: A High-Throughput LIPS Assay for Varicella Vaccine Recipients

The technology described is a sophisticated and high-throughput luciferase immunoprecipitation system (LIPS) assay designed to detect antibodies specific to Varicella-zoster virus (VZV) glycoprotein E (gE). By transfecting cells with VZV protein-Renilla luciferase fusion protein constructs and subsequently performing immunoprecipitations with protein A/G beads, this innovative assay enables the quantitative measurement of VZV gE antibody levels in blood serum samples.

Advancements in Postexposure Prophylaxis: Evaluating High-Potency Rabies-Neutralizing Monoclonal Antibodies

This technology represents a significant advancement in the field of rabies prevention, focusing on the development of highly potent rabies-neutralizing monoclonal antibodies (mAbs) for use in postexposure prophylaxis (PEP). With two mAbs, F2 and G5a, displaying exceptional neutralizing titers of 1154 and 3462 International Units (IUs) per milligram, respectively, these antibodies have the potential to offer enhanced protection against rabies when administered alongside rabies vaccines.

Antibody Targeting of Cell Surface Deposited Complement Protein C3d as a Treatment for Cancer

This technology includes monoclonal antibodies (mAb) that specifically and with high affinity bind the final complement components C3dg and C3d (subsequently referred to as C3d), which can be used to kill tumor cells that carry C3d on their cell surface. We show that tumor cells of patients treated with the therapeutic anti-CD20 mAb ofatumumab carry C3d on the cell surface and can bind and be killed by addition of anti-C3 mAbs. In contrast, further addition of more ofatumumab has only minimal effects.

Evans Blue Modified Small Molecule-based Prostate-specific Membrane Antigen (PSMA) Radiotherapy and Nuclear Imaging

This technology includes anti-PSMA antibody labeled with 177Lu, which has shown to be an effective treatment for prostate cancer. Several small molecules targeting PSMA were also evaluated in prostate cancer patients labeled with betta emitters such as 177Lu. The most common one is 177Lu-PSMA-617 which is under clinical evaluation in many countries. Usual treatment in patients in most clinical trials was composed of up to 3 cycles of 177Lu-PSMA-617.