Small Molecule Anti-cancer Agents that Stabilize the MYC-G-Quadruplex

The proto-oncogene c-Myc is deregulated and overexpressed in ~70% of all cancers. Thus, c-Myc is an attractive therapeutic target since disrupting c-Myc activity could be used as pan-chemotherapy. Beyond cancer, Myc is also a positive effector of tissue inflammation, and its function has been implicated in the pathophysiology of heart failure. Because c-Myc is a transcription factor, a rationally designed small molecule targeting c-Myc would be required to exhibit significant specificity.

Combination Cancer Therapy with HDAC Inhibitors

The clinical promise of cancer immunotherapy relies on the premise that the immune system can recognize and eliminate tumor cells identified as non-self. The success of cancer immunotherapy is limited by tumor immune evasion, preventing long-lasting tumor control. Recent evidence suggests that certain anticancer therapies can alter the biology of the surviving cell population to restore their sensitivity to T-cell-mediated lysis and help treat patients.

Novel Furoquinolinediones as Inhibitors of TDP2 and Their Potential Use to Treat Cancer

Tyrosyl-DNA phosphodiesterase 2 (TDP2) is an enzyme that playings a critical role in repairing nucleic acid lesions, namely by repairing trapped DNA cleavage complexes. TDP2 repairs topoisomerase (TOP2)-mediated DNA damage induced by chemotherapeutic agents and removes endogenous TOP2-DNA cleavage complexes. Further, TDP2 deficiency potentiates the antiproliferative activity of TOP2 inhibitors. This suggest that combination therapies consisting of TDP2 and TOP2 inhibitors have a synergistic effect on tumor tissues.

Clinical Outcome Predictors for Mantle Cell Lymphoma

Mantle cell lymphoma (MCL) is a group of aggressive B-cell lymphomas displaying heterogeneous outcomes after treatment.  Some patients have the slowly progressing disease that does not require immediate treatment, while others have a disease that rapidly progresses despite highly aggressive treatment. A number of prognostic tools have been described to determine whether patients have slow or rapidly progressing diseases, including the mantle cell lymphoma International Prognostic Index (MIPI) and biomarkers, such as KI-67.

A Rabbit Anti-pT1989 ATR Monoclonal Antibody for Use in Immunoassays

Ataxia telangiectasia mutated and Rad3 Related (ATR) protein kinase is essential for regulating DNA damage checkpoints during the cell cycle. ATR, is phosphorylated at threonine 1989 site (T1989) in response to DNA damage and ATR activation leads to activation of downstream substrates, signaling cascades and cell cycle arrest. ATR is a potential target for anticancer therapeutics to induce cancer cell death by inhibiting cell cycle arrest pathways in response to chemotherapeutics.

Cancer Therapeutic Based on Hypoxia Inducible Factor 1 (HIF-1) Inhibitors

Hypoxia is a characteristic of many solid tumors resulting from accelerated cellular proliferation and inadequate vascularization. HIF-1 is a transcription factor critical for maintaining cellular homeostasis in, and adaptively responding to, low oxygen environments. HIF-1 becomes activated through binding to the transcriptional co-activator protein p300. Disruption of the HIF-1/p300 interaction could potentially modulate HIF-1 activity.

Chimeric Antigen Receptors that Recognize Mesothelin for Cancer Immunotherapy

Chimeric antigen receptors (CARs) with high affinity for mesothelin that can be used as an immunotherapy to treat cancers that express mesothelin, such as pancreatic cancer, ovarian cancer, and mesothelioma. The technology includes CAR constructs with one of three different mesothelin-specific antibody portions, including either the mouse-derived SS or SS1 antibody fragments or the human HN1 antibody fragment.

Immunogenic Antigen Selective Cancer Immunotherapy

Melanoma is a particularly aggressive form of cancer primarily caused by over-exposure to sunlight.  Although melanoma can strike at any age, the malignancy disproportionately impacts persons of advanced age, as these individuals often have decades of repeated exposure to harmful levels of ultraviolet radiation.  Scientists at NIH among others have clarified the link between advanced melanoma and other malignancies and expression of SPANX-B.