New Cholera Vaccine and Method for Conjugating Bacterial Polysaccharides to Proteins

A new conjugate vaccine for cholera has been developed. The invention includes a new method to conjugate the O-specific polysaccharide-core part of the bacterial lipopolysaccharide and protein subcomponents. Conventional technology has entailed chemical treatment of both components to introduce linkers, which made them amenable for covalent linking. The new method simplifies production by utilizing squaric acid chemistry for conjugating the free amine-containing species (e.g. polysaccharides) directly to amine-containing species (e.g.

2-substituted Pyridines and Their Methods for Inhibiting BMP Signaling for the Treatment of Fibrodysplasia Ossificans Progressiva

This technology includes the use of a new class of molecules (nanomolar ALK2 inhibitor) to impede bone morphogenetic proteins (BMP) signaling for the treatment of Fibrodysplasia ossificans progressiva (FOP). FOP is a rare disease, characterized by malformation of the great (big) toes during embryonic development. Individuals with FOP have an identical heterozygous activating mutation (R206H) in the gene encoding ACRV1 (also known as ALK2), a BMP type 1 receptor.

Human Monoclonal Antibodies that Broadly Target Coronaviruses

An abstract for this invention was published in the Federal Register on June 10, 2022. The family of coronaviruses cause upper respiratory tract disease in humans and have caused three major disease outbreaks in recent history: the 2003 SARS outbreak, the 2012 MERS outbreak, and the current SARS-CoV-2 pandemic. There is an urgent need for strategies that broadly target coronaviruses, both to deal with new SARS-CoV-2 variants and future coronavirus outbreaks.

Single Source-Detector Separation Approach to Calculate Tissue Oxygen Saturation

Summary: 
The National Institute of Child Health and Human Development (NICHD) seeks partners and/or licensees to further develop and commercialize the miniaturized tissue oximeter for implementing the single source-detector separation algorithm in existing devices/systems to collect tissue oxygen saturation.

Description of Technology: 

Combined RNA and DNA Vaccination Strategy for Improving the Vaccine Immune Response

The development of an effective HIV vaccine has been ongoing. HIV sequence diversity and immunodominance are major obstacles in the design of an effective vaccine. Researchers at the National Cancer Institute (NCI) developed a novel vaccine strategy combining both DNA and mRNA vaccination to induce an effective immune response. This combination strategy could also be used to develop vaccines against cancer or other infectious diseases (ex. SARS-CoV-2). 

Camel VHH Nanobodies Bind the S2 Subunit of SARS-CoV-2 and Broadly Neutralize Variants including Omicron

Since its emergence in 2019, COVID-19 infected over 600 million people and over 6 million people have died from the disease. COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. Neutralizing antibodies have been developed to bind to the receptor binding domain (RBD) on the spike (S) protein. Blocking the interaction of the RBD and the ACE2 receptor, is critical in neutralizing the virus. However, the S2 subunit, is also critical for viral infection and entry into human cells.