2-substituted Pyridines and Their Methods for Inhibiting BMP Signaling for the Treatment of Fibrodysplasia Ossificans Progressiva
Reverse Thiazine Kinase Inhibitors
Summary
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a class of novel aplithianine-derived small molecule analogs that compete with ATP for binding on a range of clinically relevant kinases including:
Combined RNA and DNA Vaccination Strategy for Improving the Vaccine Immune Response
The development of an effective HIV vaccine has been ongoing. HIV sequence diversity and immunodominance are major obstacles in the design of an effective vaccine. Researchers at the National Cancer Institute (NCI) developed a novel vaccine strategy combining both DNA and mRNA vaccination to induce an effective immune response. This combination strategy could also be used to develop vaccines against cancer or other infectious diseases (ex. SARS-CoV-2).
Camel VHH Nanobodies Bind the S2 Subunit of SARS-CoV-2 and Broadly Neutralize Variants including Omicron
Since its emergence in 2019, COVID-19 infected over 600 million people and over 6 million people have died from the disease. COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. Neutralizing antibodies have been developed to bind to the receptor binding domain (RBD) on the spike (S) protein. Blocking the interaction of the RBD and the ACE2 receptor, is critical in neutralizing the virus. However, the S2 subunit, is also critical for viral infection and entry into human cells.
National Cancer Institute dosimetry system for Computed Tomography (NCICT) Computer Program
About half of the per capita dose of radiation due to medical exposures is provided by computed tomography (CT) examinations. Approximately 80 million CTs are performed annually in the United States. CT scans most commonly look for internal bleeding or clots, abscesses due to infection, tumors and internal structures. Although CT provides great patient benefit, concerns exist about potential associated risks from radiation doses – especially in pediatric patients more sensitive to radiation.
A Human Monoclonal Antibody Against Deacetylated PNAG for Use as an Antimicrobial Agent
Biofilms are complex microbial communities, surface attached and held together by self-produced polymer matrices. These matrices are mainly composed of polysaccharides, secreted proteins and nucleic acids. Poly-N-acetyl glucosamine (PNAG) is a highly conserved surface polysaccharide expressed by a range of bacterial, fungal and protozoan microorganisms.
Mice, Organs, and Mouse Alleles Carrying Germline and Conditional Deletions of the Zbtb7b Gene
The Zbtb7b gene encodes the zinc finger transcription factor ThPOK (also known as cKrox) that promotes CD4 lineage differentiation in immature T cells. CD4+ T cells, also known as “helper” T cells, are critical for long-term immunity against pathogens as well as for promoting CD8+ “effector” T cell and effective B cell responses. ThPOK is needed for the development and functional fitness of CD4+ T cells as well as multiple aspects of the immune response to infection. As such, ThPOK offers a potential target for immune regulation.
High Efficacy Vaccine and Microbicide Combination For Use Against HIV
Human immunodeficiency virus (HIV) remains a major global health challenge despite the advancement made in development of effective antiretrovirals (ARVs). ARVs are effective at limiting replication and spread of the virus, and progression to acquired immuno-deficiency syndrome (AIDS). However, ARVs often lead to emergence of drug-resistant virus strains insensitive to treatment and with toxic effects following long-term usage.
Cell Lines that Constitutively Express High-Frequency KRAS and P53 Mutations and Human Leukocyte Antigens (HLAs)
Adoptive cell therapy (ACT) is a breakthrough form of cancer immunotherapy that utilizes tumor infiltrating lymphocytes (TILs) or genetically engineered T cells to attack tumor cells through recognition of tumor-specific antigens. A major hurdle in the development of ACT is the identification and isolation of T cells that recognize antigens that are expressed by tumor cells but not by healthy tissues. Current methods to identify such T cells involve extracting autologous antigen presenting cells (APCs) from patients in an expensive, laborious, and time-consuming process.