Methods of Producing Thymic Emigrants from Induced Pluripotent Stem Cells

Hematopoietic and pluripotent stem cells can be differentiated into T cells with potential clinical utility. Current approaches for in vitro T cell production rely on Notch signaling and artificial mimicry of thymic selection. However, these approaches result in unconventional or phenotypically aberrant T cells; which may lead to unpredictable behavior in clinical use. Thus, there exists a need for improved methods of generating conventional T cells in vitro from stem cells.
 

New Insect Sf9-ET Cell Line for Determining Baculovirus Titers

The baculovirus-based protein expression system has gained increased prominence as a method for expressing recombinant proteins that are used in a wide range of biomedical applications. An important step in the use of this system is the ability to determine the virus infectious titer, i.e., the number of active baculovirus particles produced during an infection of the insect host cell.

Single domain CD4, HIV-1 Antibodies, and Fusion Proteins for treatment of HIV

Soluble forms of human CD4 (sCD4) inhibit HIV-1 entry into immune cells.  Different forms of sCD4 and their fusion proteins have been extensively studied in animal models and clinical trials as promising HIV-1 inhibitors. However, they have not been successful in clinical trials due to their transient efficacy.  sCD4 is also known to interact with class II major histocompatibility complex (MHCII) and, at low concentrations, could enhance HIV-1 infectivity. 

Methods for Producing Stem Cell-Like Memory T Cells for Use in T Cell-Based Immunotherapies

T cells currently employed for T cell-based immunotherapies are often senescent, terminally differentiated cells with poor proliferative and survival capacity. Recently, however, scientists at the National Cancer Institute (NCI) identified and characterized a new human memory T cell population with stem cell-like properties. Since these T cells have limited quantities in vivo, the scientists have developed methods by which high numbers of these cells can be generated ex vivo for use in T cell-based immunotherapies.

Fusion Proteins as HIV-1 Entry Inhibitors

Soluble forms of human CD4 (sCD4) inhibit HIV-1 entry into immune cells.  Different forms of sCD4 and their fusion proteins have been extensively studied as promising HIV-1 inhibitors – including in animal models and clinical trials.  However, they have not been successful in human studies due to their transient efficacy.  sCD4 is also known to interact with class II major histocompatibility complex (MHCII) and, at low concentrations, could enhance HIV-1 infectivity. 

Scytovirin Domain 1 Related Polypeptides

Despite therapeutic advances, human immunodeficiency virus (HIV) is still a pervasive disease, with approximately 37 million people infected worldwide. Peptides have become popular therapeutic agents, as these proteins offer structural diversity for many different diseases. Several peptides were commercially developed as HIV therapeutics, demonstrating the high potential for peptides in treating HIV. 

A peptide hydrogel for use in vascular anastomosis

In collaboration with surgery specialists from Johns Hopkins University, researchers at the National Cancer Institute (NCI) developed novel hydrogel compositions and methods of using them in the microsurgical suturing of blood vessels, which is particularly beneficial for surgeons in whole tissue transplant procedures. The lead candidate electropositive hydrogels, called APC1, was demonstrated in anastomosis mice models to be well tolerated, biocompatible, and non-toxic.

Conserved Elements Vaccine for HIV

The development of an effective HIV vaccine has been an ongoing area of research. High variability in HIV-1 virus strains, however,  represents a major challenge.  Ideally, an effective candidate vaccine would provide protection against the majority of clades of HIV.  Two major hurdles to overcome are immunodominance and sequence diversity. Researchers at the National Cancer Institute (NCI) have developed a vaccine that overcomes these major hurdles by utilizing a strategy that identifies conserved regions of the virus and exploits them for use in a targeted therapy.