Heterocyclic P2Y14 Antagonists for the Treatment of Various Conditions

The technology discloses composition of compounds that are highly selective P2Y14 receptor antagonists,
with moderate affinity with insignificant antagonism of other P2Y receptors. These compounds might provide a
treatment for patients for various disease conditions, including lung inflammation, kidney inflammation,
asthma, diabetes, obesity, and neuropathic pain of diverse states. In vivo data using mouse lines with the
receptor knocked out in specific tissues showed that P2Y14 receptor antagonists act on adipocytes to improve

A Novel Therapy/Companion Diagnostic (BAM15 And mtDNA) for Sepsis and Sepsis-induced Acute Kidney Injury

This technology includes a therapy and companion diagnostic which can be used for the early diagnosis and treatment of sepsis and sepsis-induced acute kidney injury (AKI). Mitochondrial damage plays a key role in sepsis-induced acute kidney injury BAM15 [2-ftuorophenyl){6-[(2- fluorophenyl)am ino]{1 ,2,5-oxadiazolo[3,4-e]pyrazin-5-yl)}amine] is a mitochondrial uncoupler that protects mitochondria with more specificity and less cytotoxicity than other uncouplers. Mitochondrial DNA (mtDNA) is a damage associated molecular pattern that is increased in human sepsis.

Adult Human Dental Pulp Stem Cells in vitro and in vivo

Many individuals with ongoing and severe dental problems are faced with the prospect of permanent tooth loss. Examples include dentinal degradation due to caries or periodontal disease; (accidental) injury to the mouth; and surgical removal of teeth due to tumors associated with the jaw. Clearly, a technology that offers a possible alternative to artificial dentures by designing and transplanting a set of living teeth fashioned from the patient's own pulp cells would greatly improve the individual's quality of life.

Device for Selective Partitioning of Frozen Cellular Products

Cryopreservation using liquid nitrogen frozen polyvinyl bags allows for storing cellular materials for extended periods while maintaining their activity and viability. Such bags are commonly used in the clinic to store blood products including blood cells, plasma, hematopoietic stem cells, umbilical cord blood for future uses including transplantation. These materials, typically obtained in limited quantities, may be of great therapeutic value, as is the case of stem cells or cord blood derived cells which can be used to potentially treat a number of diseases.

Antagonists of Hyaluronan Signaling for Treatment of Airway Diseases

Airway diseases, such as Asthma and Chronic Obstructive Pulmonary Disease (COPD), constitute a major health burden worldwide. It is estimated, for example, that nearly 15.0% of the adult population in the US are affected with such diseases, and the economic cost burden is over $23 billion annually. Unfortunately, the current options for treatment of such diseases are quite limited, consisting only of bronchodilators and inhaled steroids. The need for a novel and more effective class of therapeutics agents is imperative.

Controlled Expression and Assembly of Human Group-C Rotavirus-like Particles for Creation of Rotavirus Diagnostic Assays and Improved Vaccine Formulations

CDC researchers have developed methods of producing unlimited quantities of Group-C (GpC) rotavirus antigens. GpC rotaviruses are a major, worldwide cause of acute gastroenteritis in children and adults that is distinct from Group-A rotavirus. However, GpC rotaviruses cannot be grown in culture, resulting in a lack of tools for detection and treatment of GpC rotavirus disease.

Respiratory Syncytial Virus Immunogens for Vaccine and Therapeutics Development

CDC researchers have developed specific Respiratory Syncytial Virus (RSV) immunogens for use in the development of RSV-directed vaccines and therapeutics. RSV is the most common cause of serious respiratory disease in infants and young children and an important cause of disease in the elderly. To date, efforts to make a mutually safe and effective vaccine have been largely unsuccessful.

Deconvolution Software for Modern Fluorescence Microscopy

This software invention pertains to Joint Richardson-Lucy (RL) deconvolution methods used to combine multiple images of an object into a single image for improving resolution in modern fluorescence microscopy. RL deconvolution merges images with very different point spread functions, such as in multi-view light-sheet microscopes, while preserving the best resolution information present in each image.

Treatment of Chronic Kidney Disease with Synthetic Amphipathic Peptides

The invention is directed to treatment of chronic kidney disease by administering a synthetic, amphipathic helical peptide known as 5A-37pA, and novel derivatives thereof. Scientists at NIDDK have demonstrated that invention peptides antagonize activity of a particular scavenger receptor known as CD36. Using an in vivo model, NIDDK scientists have shown that invention peptides slowed progression of chronic kidney disease and can potentially be utilized as a therapeutic treatment.

A Novel Demodulation System in X-ray Imaging

In various x-ray imaging methods, including scattering correction and phase contrast imaging, intensity modulation in space is introduced into the projection images by the use of masks, gratings, or apertures. The present invention relates to a process to demodulate the modulation. The current demodulation processes are either to remove the modulation pattern through digital processing or to move the modulation pattern on the detector in a series of images that requires mechanical movements of a component and tends to lose some information of the imaged object.