2-substituted Pyridines and Their Methods for Inhibiting BMP Signaling for the Treatment of Fibrodysplasia Ossificans Progressiva

This technology includes the use of a new class of molecules (nanomolar ALK2 inhibitor) to impede bone morphogenetic proteins (BMP) signaling for the treatment of Fibrodysplasia ossificans progressiva (FOP). FOP is a rare disease, characterized by malformation of the great (big) toes during embryonic development. Individuals with FOP have an identical heterozygous activating mutation (R206H) in the gene encoding ACRV1 (also known as ALK2), a BMP type 1 receptor.

Small Molecule Inhibitors of Alpha IIb Beta 3 Receptor for Potential Therapeutic Intervention within Myocardial Infarction and Stroke

This technology includes methods for screening compounds and compositions useful for inhibiting or reducing platelet deposition, adhesion, and/or aggregation. The present invention further relates to methods of treatment or prophylaxis of thrombotic disorders, including stroke, myocardial infarction, unstable angina, abrupt closure following angioplasty or stent placement, thrombosis induced by peripheral vascular surgery, peripheral vascular disease or thrombotic disorders resulting from atrial fibrillation or inflammation.

Preparation of Substituted Diarylpropanamides as RORgt Antagonists for the Treatment of Th17-related Autoimmune Diseases

This technology includes a series of diphenylpropanamides as potent and selective RORgt inhibitors for the treatment of Th17-related autoimmune diseases. The retinoic acid-related orphan receptor RORgt plays an important role in the differentiation of thymocytes, lymphoid tissue inducer cells, and inflammatory T helper-expressing interleukin 17a (Th17) cells. Small molecule RORgt inhibitors may provide means to regulate Th17 mediated immune response. The novel molecules have potential to treat Th17-related autoimmune diseases.

Generation of Anti-TAT FXN Polyclonal and Monoclonal Antibodies to TAT Domain for Use in Quantitating or Detecting TATFrataxin (TAT-FXN) and Analogs

This technology includes a strategy to generate antibodies of rabbit origin, both polyclonal and monoclonal, which have strong affinity to the TAT sequence and which enable specific immunocapture or immunodetection of TAT containing frataxin and analogs for quantitative or qualitative assays. In addition, antibodies that react with the FXN region have also been generated with this strategy. The HIV virus encoded a translational activator protein containing a 12 amino acid domain which permits transmembrane delivery of any therapeutic protein containing the sequence.

Preparation of Benzene-1,4-disulfonamide Derivatives Useful as Therapeutic TRPML1 Receptor Modulators for the Treatment of Lysosomal Dysfunction and Membrane Repair Disorders

This technology includes a series of novel benzene-1,4-disulfonamides that activate TRPML1 receptor. The TRPML1 receptor is a lysosomal Ca2+ channel that has been shown to be involved in controlling lysosome functions, among then the maintenance of the integrity of the plasma membrane and the modulation of autophagosome-lysosome fusion. The improved ability of the receptor to deliver Ca2+ ions to the cytosol had been correlated with its capacity to modulate autophagy and lysosome exocytosis.

Compounds for Niemann Pick C and Other Lysosomal Storage Disorders

This technology includes compounds that improve endoplasmic reticulum-lysosomal trafficking and normalizes the Niemann-Pick type C (NPC) phenotype in assays using NPC1 patient cells, which can be used for the treatment of NPC, other lysosomal storage disorders, and potentially other neurodegenerative disorders. NPC is a rare neurodegenerative lipidosis caused by mutations in NPC1 or NPC2 genes, and characterized by the accumulation of cholesterol and glycolipids in the late endosomes and lysosomes. Currently there is no FDA-approved treatment for this devastating neurodegenerative disease.

Sensor for Real-time Detection of Plasma Metabolites Levels for the Diagnosis and Care of Metabolic Disorders

This technology includes the development of devices capable of real-time evaluation of metabolite levels for the treatment of numerous metabolic disorders, including hyperammonemia and aminoacidopathies. Currently, the monitoring of metabolite levels is done in a hospital setting with specialized mass spectrometry instrumentation. As a consequence, susceptible patients who are undergoing a crisis need to visit the hospital for testing to determine if there is a metabolite disturbance.

Treatment of primary hyperoxalurias with small molecule lactate dehydrogenase inhibitors such as WO2018005807A1

This technology includes the use of novel lactate dehydrogenase (LDH) inhibitors, including WO2018005807A1, for the treatment of primary hyperoxalurias (PHs). PHs are rare autosomal recessive disorders caused by overproduction of oxalate, leading to recurrent calcium oxalate kidney stone disease, and in some cases end-stage renal disease. One potential strategy to treat PHs is to reduce the production of oxalate by diminishing the activity of LDH, the proposed key enzyme responsible for converting glyoxylate to oxalate.

Novel Codon-Optimized MUT Gene Therapeutic for Methylmalonic Acidemia (MMA)

Methylmalonic Acidemia (MMA) is a metabolic disorder characterized by increased acidity in the blood and tissues due to toxic accumulation of protein and fat by-products resulting in seizures, strokes, and chronic kidney failure. A significant portion of MMA cases stem from a deficiency in a key mitochondrial enzyme, methylmalonyl-CoA mutase (MUT), required to break down amino acids and lipids. Currently, there are no treatments for MMA and the disease is managed primarily with dietary restriction of amino acid precursors and liver-kidney transplantation in severe cases.

Fibroblast Cell Lines (with L444P/RecNci1 Genotype) for the Screening of Small Molecules for Gaucher Disease Treatment

This technology includes two human fibroblast cell lines to be used to study the defects in GBA1 gene and protein and to screen small molecules for involvement in Gaucher disease. Glucocerebrosidase (GBA1 or GCase or beta-glucosidase) is a lysosomal enzyme, responsible for breakdown of a fatty material called glucocerebroside (or glucosyl ceramide). Deficiency or malfunction of GBA1 leads to the accumulation of insoluble glucocerebrosides in tissues, which is a major symptom of Gaucher disease.