Non-invasive diagnostic and prognostic assay for early stage lung cancer

In the United States alone, one of four cancer deaths occur from lung cancer and there are over 8 million individuals considered to be at high-risk due to cigarette smoking and other behaviors. It's well known that early detection of cancer significantly improves survival of this disease, however a lack of lung cancer screenings and analysis precludes fast results at a low cost.

Compositions and Methods for the Treatment of Immune-Related Disease

The ability of the immune system to discriminate between self and non-self is controlled by central and peripheral tolerance mechanisms. One of the most important ways the immune system controls the outcome of such a response is through naturally occurring CD4+CD25+ regulatory T cells.

The present invention relates to compositions and methods for treating immune related disease, a method for determining the presence of or predisposition to an immune related disease, and a pharmaceutical composition for treating an immune related disease in a mammal.

Cell-Nanofiber Composite and Cell-Nanofiber Composite Amalgam Based Engineered Intervertebral Disc

Diseased or damaged musculoskeletal tissues are often replaced by an artificial material, cadaver tissue or donated, allogenic tissue. Tissue engineering offers an attractive alternative whereby a live, natural tissue is generated from a construct made up of a patient’s own cells or an acceptable/compatible cell source in combination with a biodegradable scaffold for replacement of defective tissue.

User-friendly, Powerful Software for Analyzing ChIP-Seq Data

The present invention provides a user-friendly software, called PAPST (Peak Assignment and Profile Search Tool for ChIP-Seq), for bench scientists to work with ChIP-Seq data in seconds, allowing the scientists to screen genes against multiple genomic features with ease and efficiency previously not realized. Furthermore, PAPST may be used to identify genes of special significance in a wide variety of biological and biomedical fields, which could lead the discovery of disease-associated genes and the development of therapeutic methods for human diseases.

Calorimeter And Method For Simultaneous Measurement Of Thermal Conductivity And Specific Heat Of Fluids

The present invention is a novel calorimeter and calorimetry apparatus and method for the ultrasensitive simultaneous measurement of heat capacity and thermal conductivity of fluids. The unique simultaneous measurement of the two parameters avoids sources of error seen in other methods. The calorimeter shows excellent accuracy of 1 part in 10,000 and run-to-run variability of 1 part in 100,000, as well as excellent long-term reproducibility.

Signal Transduction Inhibitors Of Allergic Reactions

Allergic reactions affect nearly 40 million persons in the United States. Allergic reactions are due to a sequential interaction beginning with the extracellular aggregation of the high affinity receptor for IgE (FcepsilonRI) followed by intracellular tyrosine phosphorylation which initiates a further cascade of events eventually leading to histamine and cytokine release. The reaction is initiated by Lyn kinase which is pre-associated with the FcepsilonRI.

DLX3-floxed mice (DLX3f/f) for Use in Drug Development and In Vivo Research Studies for Ectodermal Dysplasia Disorders

This technology includes the creation of DLX3-floxed mice, specifically designed for conditional deletion of the DLX3 gene via Cre-mediated recombination. This innovative approach aims to develop mouse models for studying ectodermal dysplasia disorders. Ectodermal dysplasias are a diverse group of genetic conditions affecting the development of ectodermal structures, including hair, teeth, and bones. The DLX3f/f mice are particularly valuable for modeling specific disorders such as Tricho-dento-osseous syndrome (TDO), Amelogenesis Imperfecta (AI), and Dentinogenesis Imperfecta (DI).

DLX3 Knockout Mice for the Study Mouse Models of Tooth, Hair, and Epidermal Defects

This technology includes K14creDLX3 conditional knockout (cKO) mice which will be used to study ectodermal dysplasia disorders such as Amelogenesis Imperfecta, and to study molecular mechanisms of DLX3 regulation in skin and ectodermal appendages. DLX3 is expressed in the epidermis, hair matrix cells in the hair follicle and in the mesenchymal and epithelial compartment of the tooth during embryonic development. To determine the transcriptional network dependent on DLX3-function, we will generate and analyze an epithelial-specific conditional knockout of DLX3.

Mouse Model of Pompe Disease for Therapy Discovery

This technology includes a mouse model of Pompe disease, created by targeted inactivation of the acid alpha-glucosidase gene, to test novel therapies. Pompe disease is a severe muscle disorder that affects people at any age. It is a rare genetic disease caused by a deficiency of a lysosomal enzyme acid alpha-glucosidase. The enzyme degrades glycogen to glucose in the lysosomes. The deficiency leads to accumulation of glycogen in multiple organs, but cardiac and skeletal muscles are most severely affected.