Diagnostic and Therapeutic Use of Brother of the Regulator of Imprinted Sites (BORIS) Alternative Splice Forms

This technology identifies twenty five (25) new alternatively spliced transcripts of the BORIS gene. The transcripts lead to the expression of seventeen different protein isoforms with variable N- and C-termini encoded by BORIS gene locus. Differential expression levels of BORIS isoforms were observed in different cancers. While some BORIS alternative splice variants were expressed at different levels in all types of cancers, other expressed forms are specific to particular cancer(s).

Neutralizing Monoclonal Antibodies to Respiratory Syncytial Virus

Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis and pneumonia among infants and children under 1 year of age. Illness begins most frequently with fever, runny nose, cough, and sometimes wheezing. During their first RSV infection, between 25% and 40% of infants and young children have signs or symptoms of bronchiolitis or pneumonia, and 0.5% to 2% require hospitalization. Most children recover from illness in 8 to 15 days. The majority of children hospitalized for RSV infection are under 6 months of age.

Hepatitis C Virus Cell Culture System

Hepatitis C virus (HCV) infection causes chronic liver disease and is a major global health problem with an estimated 170 million people affected worldwide and 3-4 million new cases every year. Therapeutic advances will be greatly aided by the ability of researchers to successfully replicate and characterize the virus in vitro. The study of HCV replication has, however, been hindered by the lack of an efficient virus culture system.

Collagen-Induced Platelet Aggregation Inhibitor from Mosquito Salivary Glands

Exposed collagen in injured blood vessels provides a substrate for platelets to adhere and aggregate initiating the first step in thrombosis, the formation of blood clots inside a blood vessel. Despite the essential role of platelets in vascular injury, excessive platelet aggregation may also result in thrombotic diseases such as stroke and heart attack.

Ixodes scapularis Tissue Factor Pathway Inhibitor

Ixodes scapularis is a blood-sucking tick and the principal vector of Lyme disease, a spirochetal illness caused by Borrelia burgdorferi and now the most common vector-borne infection in the United States; more than 50,000 cases have been reported during the last ten years. The salivary gland of I. scapularis has a number of pharmacologically active molecules that help the tick to successfully feed on blood, such as inhibitors of complement system, in addition to coagulation and platelet aggregation inhibitors.

Muramyl Dipeptide as a Therapeutic Agent for Inflammation

The nucleotide-binding oligomerization domain 2 (NOD2) protein plays a key role in innate immunity as a sensor of muramyl dipeptide (MDP), a breakdown product of bacterial peptidoglycan. Bacterial peptidoglycan promotes the innate immune response through the activation of Toll-like receptor 2 (TLR2), which ultimately provokes inflammation. Activation of NOD2 by MDP negatively regulates the activity of TLR2, and thus reduces inflammation.

Generation of Wild-Type Dengue Viruses for Use in Rhesus Monkey Infection Studies

Dengue virus is a positive-sense RNA virus belonging to the Flavivirus genus of the family Flaviviridae. Dengue virus is widely distributed throughout the tropical and semitropical regions of the world and is transmitted to humans by mosquito vectors. Dengue virus is a leading cause of hospitalization and death in children in at least eight tropical Asian countries.

A Novel Treatment for Malarial Infections

The inventions described herein are antimalarial small molecule inhibitors of the plasmodial surface anion channel (PSAC), an essential nutrient acquisition ion channel expressed on human erythrocytes infected with malaria parasites. These inhibitors were discovered by high-throughput screening of chemical libraries and analysis of their ability to kill malaria parasites in culture. Two separate classes of inhibitors were found to work synergistically in combination against PSAC and killed malaria cultures at markedly lower concentrations than separately.

Therapeutic Methods Based on In Vivo Modulation of the Production of Interferon gamma

The technology offered for licensing is in the field of Therapeutics. More specifically, the technology relates to biological ligands and their use as modulators of the production of Interferon gamma as a means to treat a broad spectrum of diseases. The invention describes and claims antibodies and other ligands that can stimulate Natural Killer (NK) immune cells to produce Interferon gamma which contributes to the combat against foreign pathogens.