Agonistic Human Monoclonal Antibodies against Death Receptor 4 (DR4)
The National Cancer Institute is seeking parties interested in licensing human monoclonal antibodies (mAbs) that bind to death receptor 4 ("DR4").
The National Cancer Institute is seeking parties interested in licensing human monoclonal antibodies (mAbs) that bind to death receptor 4 ("DR4").
The successful development of new cancer therapeutics requires reliable preclinical data that are obtained from mouse models for cancer. Human tumor xenografts, which require transplantation of human tumor cells into an immune compromised mouse, represent the current standard mouse model for cancer. Since the immune system plays an important role in tumor growth, progression and metastasis, the current standard mouse model is not ideal for accurate prediction of therapeutic effectiveness in patients.
The National Cancer Institute's Protein Expression Laboratory seeks parties interested in licensing the novel delivery of RNA to mammalian cells using virus-like particles.
Current treatments for cancer and viral infection are limited remedies that often suppress cell or viral replication rather than eliminate diseased cells entirely from the body. A further limitation is that these therapies often compromise healthy cells as well, leaving problems of recurrence and side effects.
Researchers at developed a novel therapeutic nanoparticle (NP) system harboring therapeutic small siRNA that can significantly enhance effectiveness and specificity of treatments by killing diseased cells.
Available for commercial development is software that provides automatic visualization of features inside biological image volumes in 3D. The software provides a simple and interactive visualization for the exploration of biological datasets through dataset-specific transfer functions and direct volume rendering. The method employs a K-Means++ clustering algorithm to classify a two-dimensional histogram created from the input volume. The classification process utilizes spatial and data properties from the volume.
Exposure to ionizing radiation or agents that induce DNA double-stranded breaks (DSBs), which is one of the most damaging types of lesions in DNA, can result in damage to cells and/or tissues. Thiscan lead to illness (i.e., Acute Radiation Syndrome, Cancer) or death. Identifying the amount of exposure to a DNA DSB-causing agent can be useful in determining the need for further testing, avoidance or modification of certain medical procedures, and/or types of medical treatments.
Current methods to deliver proteins into cells (e.g., using retrovirus, DNA transfection, protein transduction, microinjection, complexing the protein with lipids, etc.) have many shortcomings, such as lack of target specificity toxicity, or unwanted random integration into the host chromosome. Protein transduction is an emerging technology for delivering proteins into cells by exploiting the ability of certain proteins to penetrate the cell membrane. However, the majority of the proteins delivered by this means are usually trapped and subsequently degraded in the endosomes-lyso
Soluble forms (sCD4) of human CD4, the HIV-1 primary receptor, are potent HIV-1 entry inhibitors. Both four-domain (D1-4) and two-domain (D1D2) sCD4 and their fusion proteins have been tested as candidate therapeutics in animal models and in human clinical trials and were well tolerated by patients with no significant clinical or immunologic toxicities and exhibited significant inhibitory activities. However, their activities were transient and the virus rapidly rebound.
The National Cancer Institute's Laboratory of Pathology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize therapeutics targeting vasodialation.
Nitric oxide (NO) plays an important role as a major intrinsic vasodilator, and increases blood flow to tissues and organs. Disruption of this process leads to peripheral vascular disease, ischemic heart disease, stroke, vascular insufficiency associated with diabetes, and many more diseases that are significant.
Research and clinical applications of induced pluripotent stem (iPS) cells are currently limited by reprogramming methods that may modify the host genome, and therefore be potentially unsafe and problematic for use in basic research, cell-based therapies, and drug-discovery applications.