Iodonium Analogs as Inhibitors of NADPH Oxidases and other Flavin Dehydrogenases and their Use for Treating Cancer

Diverse human cancers like colorectal, pancreatic, ovarian, melanoma, and pre-cancers express NADPH oxidases (NOX) at high levels. Reactive oxygen species (ROS) produced from metabolic reactions catalyzed by NOX in tumors are essential to the tumor’s growth. Though drugs that inhibit ROS production by NOX could be effective against a variety of human cancers, these types of drugs are not widely available.

Single Domain Antibodies (Nanobodies) Targeting SARS-CoV-2 for treating COVID-19

The COVID-19 pandemic is a worldwide public health crisis with over 100 million confirmed cases and 2.4 million deaths as of February 2021. COVID-19 is caused by a novel coronavirus called SARS-CoV-2. SARS-COV-2 infects hosts via its spike (S) protein. The S protein contains the receptor binding domain (RBD) that binds to the angiotensin converting enzyme 2 (ACE2) receptor on human cells to facilitate viral entry and infection. There are few therapeutics available for COVID-19 patients that directly target SARS-CoV-2.

Size-dependent brain distribution of macromolecular drug delivery platform

The blood brain barrier (BBB) is a specialized endothelium that prevents the uptake of substances from the systemic circulation into the central nervous system. This barrier, while protecting the sensitive physiological environment of the brain, is also a major impediment in administering therapeutics that need to pass through the BBB. A drug delivery platform that could deliver therapeutic agents directly to the brain is needed, and could have wide ranging significance in a variety of psychiatric, oncology, infectious, and neurodegenerative diseases.

3-o-sulfo-galactosylceramide Analogs as Activators of Type II Natural Killer T (NKT) Cells to Reduce Cancer Metastasis to the Lung

Lung metastases are a sign of widespread cancer with poor survival rate. Lung malignancies can originate from almost any cancer type spread via the blood stream. Most common lung metastases are from melanoma, breast cancer, bladder cancer, colon cancer, prostate cancer, neuroblastoma, and sarcoma. Living more than 5 years with lung metastases is uncommon, and surgical procedures are only effective with localized lung metastases. Lung metastasis are extremely frequent and resistant to regular treatment due to immunosuppressive regulatory sulfatide-reactive type II NKT cells.

RNASEH-Assisted Detection Assay for RNA

Several viral epidemics – such as the epidemics caused by H1N1 influenza virus, human immunodeficiency virus (HIV), Ebola virus, Zika virus, severe acute respiratory syndrome (SARS) virus, Middle East respiratory syndrome (MERS) virus and SARS-CoV-2 – have profoundly impacted global human health. Early identification of infected and/or infectious persons and isolating them from the population are some of the most effective and evident measures to prevent human-to-human spreading.

Oxynitidine Derivatives Useful as Inhibitors of Topoisomerase IB (TOP1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1) for Treating Cancer

Summary: 

The National Cancer Institute (NCI) is actively seeking potential licensees and/or co-development research collaboration partners interested in advancing oxynitidine derivatives as novel inhibitors of topoisomerase IB (TOP1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) for cancer treatment. These TOPI and TDP1 inhibitors, when administered together, demonstrate enhanced anti-tumor efficacy.

Description of Technology: 

Use of Acetalax for Treatment of Triple Negative Breast Cancer

Triple negative (progesterone receptor (PR)-, estrogen receptor (ER)-, human epidermal growth receptor 2 (HER2)-) breast cancer (TNBC) is an aggressive subtype that affects 15-20% of the 1.7 million cases of breast cancer occurring annually.  Currently, standard treatments of TNBC include cytotoxic chemotherapies, surgery, and radiation. However, TNBC readily becomes resistant to chemotherapy, and those with TNBC are more likely to have a recurrence or die within five years compared to those with other breast cancer types.

Calcium (Ca2+) Flux-Dependent Method to Detect and Isolate Tumor Reactive T Cell Receptors (TCRs)

T cells with T cell receptors (TCRs) for cancer-specific antigens are used for adoptive cell therapy (ACT), wherein a patient’s T cells are redirected against their own cancer. However, these isolated T cells may require further ex vivo manipulation to enhance their anti-tumor activity. The ex vivo manipulation of these T cells, or the selection of less functionally inert T cells, and genetic insertion of tumor specific TCRs may circumvent these limitations.

Extremely Rapid Method to Isolate Neoantigen Reactive T Cell Receptors (TCRs)

Adoptive cell transfer (ACT) uses tumor infiltrating lymphocytes (TILs) that recognize unique antigens expressed by cancer cells (“neoantigens”). Neoantigen specific TIL administration in patients has resulted in long term regression of certain metastatic cancers. However, one of the challenges of ACT and engineered T cell receptor (TCR) therapies more broadly, is the identification and isolation of these mutation specific TILs and TCRs. Only a fraction of TILs in a given patient is known to be tumor reactive, while the majority are not useful for cell therapy.

Method of Neoantigen-Reactive T Cell Receptor (TCR) Isolation from Peripheral Blood of Cancer Patients

Adoptive cell transfer (ACT) uses tumor infiltrating lymphocytes (TILs) that recognize antigens expressed by cancer cells (neoantigens). Neoantigen specific TIL administration in patients has resulted in long-term regression of certain metastatic cancers. However, current procedures for TIL therapy are highly invasive, labor-intensive, and time consuming. The success of these procedures is limited and differs between patients and histologies.