Fluorescent Nanodiamonds as Fiducial Markers for Microscopy
DeePlexing – Extending Imaging Multiplexity Using Machine Learning
Spatial proteomics and transcriptomics are fast-emerging fields with the potential to revolutionize various branches of biology. In the last five years, various multiplex immunofluorescence and immunohistochemistry imaging methods have been developed to stain 5-60 different protein markers in a given tissue. Nonetheless, most of these techniques are iterative and can image a maximum of 3-8 markers in a single cycle, resulting in processing time of several hours to days.
LZK and DLK Inhibitors to Target LZK and Suppress MYC Expression, Inhibit AKT Activation, and Promote Cancer Cell Death and Tumor Regression
This technology includes the use of LZK and DLK inhibitors to be used for the treatment of head and neck squamous cell carcinoma (HNSCC) or lung squamous cell carcinoma (LSCC). Specifically, we demonstrate that inhibitors that can be repurposed to target LZK suppresses LZK kinase-dependent stabilization of MYC and activation of the PI3K/AKT pathway. In vivo preclinical cell line xenograft mouse model demonstrates that targeting LZK will suppress tumor growth. We also demonstrate that several additional compounds potently inhibit LZK and could serve as new therapeutic modalities.
A New Molecular Scaffold for Targeting hRpn13 as a Treatment for Cancer
This technology includes a new chemical scaffold (with lead compound XL5) against hRpn13 that induces apoptosis, which may have clinical efficacy against cancer. The structure of XL5-conjugated hRpn13 guided the design of XL5-PROTAC degrader compounds that exhibit greater efficacy than previous hRpn13-targeting compounds, as evaluated by selectivity for hRpn13, induction of apoptosis, and loss of cell viability. In cells, XL5-PROTACs revealed the presence of a truncated hRpn13 product that binds to proteasomes and is selectively degraded by XL5-PROTACs.
Real-time Monitoring of In Vivo Free Radical Scavengers Through Hyperpolarized [1-13C] N-acetyl Cysteine as a Diagnostic and Disease Monitoring Tool
This technology includes synthesized demonstrated [1-13C] NAC as a promising novel probe for hyperpolarized 13C MRI methodologies which could provide diagnostic, and evaluation of response to treatment in various cancers and neurological diseases. N-acetyl cysteine (NAC) is a widely used therapeutic and involved to stimulate glutathione synthesis. Glutathione elevates detoxification and works directly as a free radical scavenger. In vivo hyperpolarized NAC was broadly distributed throughout the body.
Evans Blue Modified Small Molecule-based Prostate-specific Membrane Antigen (PSMA) Radiotherapy and Nuclear Imaging
This technology includes anti-PSMA antibody labeled with 177Lu, which has shown to be an effective treatment for prostate cancer. Several small molecules targeting PSMA were also evaluated in prostate cancer patients labeled with betta emitters such as 177Lu. The most common one is 177Lu-PSMA-617 which is under clinical evaluation in many countries. Usual treatment in patients in most clinical trials was composed of up to 3 cycles of 177Lu-PSMA-617.
Radiotherapy and Imaging Agent-based on Peptide Conjugated to Novel Evans Blue Derivatives with Long Half-life and High Accumulation in Target Tissue
This technology includes a newly designed, truncated Evans Blue (EB) form which allows labeling with metal isotopes for nuclear imaging and radiotherapy. Unlike previous designs, this new form of truncated EB confers site specific mono-labeling of desired molecules. The newly designed truncated EB form can be conjugated to various molecules including small molecules, peptides, proteins and aptamers to improve blood half-life and tumor uptake, and confer better imaging, therapy and radiotherapy.