Species-specific Nucleic Acid Detection Assay for Fungi

This invention pertains to nucleic acid-based assays for the detection of Aspergillus and other filamentous fungi. Assays cover the species-specific detection and diagnosis of infection by Aspergillus, Fusarium, Mucor, Penecillium, Rhizomucor, Absidia, Cunninghamella, Pseudallescheria or Sporthrix in a subject. This can reduce identification time from several days by conventional culture methods to a matter of hours.

Nucleic Acid-based Differentiation and Identification of Medically Important Fungi

This invention, entailsnucleic acid-based assays, for detecting the presence of pathogenic fungi such as Histoplasma capsulatum, Blastomyces dermatitidis, Coccidioides immitis, Pneumocystis brasiliensis, and/or Penicillium marneffei within a sample. Within a healthcare setting, this particular approach can greatly reduce pathogen identification time, better direct treatments and ultimately improve patient outcomes.

Nucleic Acid Assays for the Detection and Discrimination of Aspergillus Fungi Species within Biological Samples

This invention relates to assays for the detection and species-specific identification of Aspergillus fungi. Accurate clinical diagnosis of Aspergillus species has become increasingly important as certain species, such as A. terreus and A. fumigatus, are resistant to specific commonly employed antifungal compounds. Most contemporary fungal diagnostic methods are time-consuming and inaccurate.

Nucleic Acid-based Compositions and Methods for the Detection of Pathogenic Candida or Aspergillus Fungi Species

This invention pertains to the development of oligonucleotides for the rapid nucleic acid-based identification of Candida or Aspergillus fungi species in biological samples. This identification is accomplished by the targeting the internally transcribed spacer-2 (ITS2) region that are unique to various Candida species. The assay is sensitive, specific and rapid. Implementation of the technology will facilitate earlier specific diagnoses, and lead to better antifungal therapy implementation for infected patients.

Nucleic Acid-based Compositions and Methods for the Species-Specific Detection of Pathogenic Candida Fungi

This invention pertains to the development of oligonucleotides for the rapid nucleic acid-based identification of the Candida fungi species C. haemulonii, C. kefyr, C. lambica, C. lusitaniae, C. norvegensis, C. norvegica, C. rugosa, C. utilis, C. viswanathii, C. zeylanoides, C. dubliniensis, and C. pelliculosa within biological samples. This identification is accomplished by the targeting the internally transcribed spacer-2 (ITS2) region that are specific for each species.

Diagnostics, Vaccines, and Delivery-Vehicles Related to Novel Phlebovirus

This CDC invention relates to primers and probes that specifically hybridize with Heartland virus (HRTLDV), a unique member of the genus Phlebovirus. It further relates to polyclonal antibodies specific for HRTLDV proteins. Serological detection assays using HRTLDV nucleic acid molecules, proteins, probes, primers, and antibodies are provided. Importantly, the HRTLDV genome can be engineered using reverse genetics to be attenuated, allowing development of a vaccine for other viruses within the Phlebovirus genus or Bunyaviridae family.

Protecting Healthcare Workers by Detecting Contamination From Hazardous Antineoplastic Drugs

CDC NIOSH early technology to detect surface contamination by hazardous antineoplastic drugs. Antineoplastic drugs, also known as anti-cancer drugs or chemotherapy, are used in the treatment of many types of cancer. While these drugs are lifesaving to patients, they must be handled with care by healthcare workers. Exposure from contaminated surfaces and drug vials can cause skin problems, birth defects, reproductive issues, and increased risk of various cancers.

Protecting Healthcare Workers by Detecting Contamination From Hazardous Antineoplastic Drugs

CDC NIOSH early technology to detect surface contamination by hazardous antineoplastic drugs. Antineoplastic drugs, also known as anti-cancer drugs or chemotherapy, are used in the treatment of many types of cancer. While these drugs are lifesaving to patients, they must be handled with care by healthcare workers. Exposure from contaminated surfaces and drug vials can cause skin problems, birth defects, reproductive issues, and increased risk of various cancers.