Triazole Derivatives of 4,7-disubstituted 2 naphthoic acid (PPTN) as P2Y14 Receptor Antagonists

The Molecular Recognition Section of NIDDK announces the availability of a novel triazole-based probes, structures which act as antagonists at human P2Y14 receptors. Although the physiologic functions of this receptor remain undefined, recently it has been strongly implicated in immune and inflammatory responses. Prior work with a 4,7-disubstituted 2 naphthoic acid derivative (PPTN) established the ability to inhibit chemotaxis of human neutrophils in the lung and kidney.

AAV5 Vector for Transducing Brain Cells and Lung Cells

The invention described and claimed in this patent application is related to the delivery of heterologous nucleic acids or genes to particular target cells. In particular, the application relates to methods of delivering a heterologous nucleic acid or gene of interest to particular target cells using an Adeno-Associated Virus of serotype 5 (AAV5). The particular target cells identified include the alveolar cells of the lung and cerebellar and ependymal cells of the brain.

Antagonists of Hyaluronan Signaling for Treatment of Airway Diseases

Airway diseases, such as Asthma and Chronic Obstructive Pulmonary Disease (COPD), constitute a major health burden worldwide. It is estimated, for example, that nearly 15.0% of the adult population in the US are affected with such diseases, and the economic cost burden is over $23 billion annually. Unfortunately, the current options for treatment of such diseases are quite limited, consisting only of bronchodilators and inhaled steroids. The need for a novel and more effective class of therapeutics agents is imperative.

Generation of Artificial Mutation Controls for Diagnostic Testing

This technology relates to a method of generating artificial compositions that can be used as positive controls in a genetic testing assay, such as a diagnostic assay for a particular genetic disease. Such controls can be used to confirm the presence or absence of a particular genetic mutation. The lack of easily accessible, validated mutant controls has proven to be a major obstacle to the advancement of clinical molecular genetic testing, validation, quality control (QC), quality assurance (QA), and required proficiency testing.

Diisocyanate Specific Monoclonal Antibodies for Occupational and Environmental Monitoring of Polyurethane Production Exposure-related Asthma and Allergy and Clinical Diagnosis

CDC researchers have developed monoclonal antibodies useful as diagnostics for diisocyanate (dNCO) exposure and for toxicity characterization of specific dNCOs. Currently, dNCOs are used in the production of all polyurethane products and are the most commonly reported cause of occupational-induced asthma and also linked to allergic contact dermatitis. Presumptive diagnosis of dNCO asthma is presently dependent on criteria such as work history, report of work-related asthma-like symptoms and nonspecific airway reactivity to methacholine challenge.

Auscultatory Training System and Telemedicine Tool with Accurate Reproduction of Physiological Sounds

This CDC developed auscultatory training apparatus includes a database of prerecorded physiological sounds (e.g., lung, bowel, or heart sounds) stored on a computer for playback. Current teaching tools, which utilize previously recorded sounds, suffer from the disadvantage that playback environments cause considerable distortion and errors in sound reproduction. For example, to those trainees using such systems, the reproduced respiratory sounds do not “sound” as if they are being generated by a live patient.

Focused Electrostatic Collection of Aerosol Particles for Chemical Analysis by Spectroscopic Techniques

This CDC-developed technology is an aerosol preconcentration unit (APU) designed for use with spectroscopic detection techniques, including emission, Raman, or infrared spectroscopies. Most existing pulsed microplasma techniques, such as laser-induced breakdown, for aerosols rely mainly on filter-based collection and suffer from poor accuracy, precision, and detection limits and require long sample collection times.

Improved Acoustic Plethysmograph System for Noninvasive Measurement of Pulmonary Function

CDC researchers have developed a novel acoustic whole body plethysmograph (AWBP) that allows measurement of tidal volume in lab animals, independent of gas compression in the lung. This system provides particular advantages over the traditional whole body plethysmograph (WBP) when measuring model animals with increased gas compression due to increased airway resistance or increased acceleration in the breathing pattern.