Treatment of Alcoholism by Inhibition of the Neuropeptide Y Receptor

Aversive or anticraving medications are currently used to supplement behavioral treatment of alcohol dependence. However, there is a need for developing more effective medications than those available. Neuropeptide Y (NPY) is a neurotransmitter known for increasing appetite and possibly having a role in alcohol preference and dependence. This is likely to be mediated by activation of the post-synaptic NPY-Y1 receptor, but developing molecules suitable for human therapeutics that activate that receptor represents a major challenge.

Derivatives of Docosahexaenoylethanolamide (DEA) for Neurogenesis

The invention pertains to derivatives of docosahexaenoylethanolamide (synaptamide or DEA) and their use in inducing neurogenesis, neurite growth, and/or synaptogenesis. As such, these DEA derivatives can be used as therapeutics for neurodegenerative diseases such as traumatic brain injury, spinal cord injury, peripheral nerve injury, stroke, multiple sclerosis, autism, Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis. The DEA derivatives of the invention have increased potency and hydrolysis resistance as compared to native DEA.

Small Interfering RNA Inhibition of Cannabanoid-1 Receptor (CB1R) for Treating Type 2 Diabetes

The invention pertains to the use of glucan encapsulated non-immunostimulatory small interfering RNAs (siRNAs) to treat type-2 diabetes. Endocannabinoids (EC) are lipid signaling molecules that act on the same cannabinoid receptors that recognize and mediate the effects of endo- and phytocannabanoids. EC receptor CB1R activation is implicated in the development of obesity and its metabolic consequences, including insulin resistance and type 2 diabetes.

Cannabinoid Receptor Meditating Compounds for Metabolic Disease

There is evidence that the metabolic effects of endocannabinoids are mediated by CB1 receptors in peripheral tissues. While prior attempts at generating CB1 receptor blockers have had serious neuropsychiatric side effects, inventors at NIH have discovered compounds that block CB1 receptors with reduced brain penetrance. In addition, some of these compounds also have a direct inhibitory effect on inducible nitric oxide synthase (iNOS), whereas another group of the compounds directly activates AMP kinas.

Discovery of Novel SHT (SHT6) Compounds for the Treatment of Central Nervous System-related Diseases

This technology includes novel compounds which can be expected to selectively target the 5HT6 receptor, which is implicated in CNS-related diseases. In particular 5HT6 antagonism has been implicated in cognitive impairment, AD/PD and drug abuse/alcohol abuse related disorders. 5HT6 compounds have also shown to reduce appetite and induce weight loss. As such, compounds that can selectively antagonize 5HT6 along with an additional signaling pathway implicated in such diseases like inducible nitric oxide synthase (iNOS) may be valuable for such CNS mediated diseases.

Intralipid as a Contrast Agent to Enhance Subsurface Blood Flow Imaging

This technology includes a blood flow imaging method that allows for a higher density of smaller particles to be detected. Current imaging methods that are based on Doppler measurements are limited by the discontinuity in the capillary flow in the space between red blood cells. The core technology is to use a scattering agent to enhance capillary flow or microcirculation. This technology has been tested for optical coherence Doppler tomography, but can be expended to any Doppler based flow imaging techniques such as laser speckle imaging.