Interleukin-27 Producing B-Cell Population and Uses Thereof
Summary:
The National Eye Institute (NEI) seeks research co-development partners and/or licensees to advance the production and uses of interleukin-27 (IL-27) producing B-regulatory cell (i27-Breg) therapy for immune related autoimmune disorders. These disorders include but are not limited, to age-related macular degeneration (AMD), graft-versus-host disease (GVHD), multiple sclerosis (MS) and transplant rejection.
TYROSINASE Gene Therapy for Oculocutaneous Albinism type 1A
Summary:
The National Eye Institute seeks research co-development partners and/or licensees for an adeno-associated viral gene therapy for Oculocutaneous Albinism type 1A.
Suppression Of Uveitis By A STAT3 Single Domain Antibody
Summary:
The National Eye Institute seeks research co-development partners and/or licensees for a STAT3 antibody that can suppress uveitis.
Use of Interleukin (IL)-34 to Treat Retinal Inflammation and Neurodegeneration
Interleukin (IL)-34 is a homodimer that is produced mainly by keratinocytes, neuronal cells and regulatory T cells (Tregs). It is believed to play important roles in chronic inflammation and the homeostasis of microglia. Currently, there is no effective treatment for many types of retinal degeneration. An improved treatment of autoimmune uveitis is also needed, as current uveitis treatment primarily uses steroidal anti-inflammation medication, which may produce significant unwanted side effects in long-term use.
Metformin for the Treatment of Age-related Retinal Degeneration
Retinal Degenerations (RD) are the leading cause of blindness in the United States. The degeneration of the Retinal Pigment Epithelium (RPE) is associated with various types of RD such as Stargardt’s disease, retinitis pigmentosa, choroideremia, Late-Onset Retinal Degeneration (L-ORD), and Age-related Macular Degeneration (AMD). The RPE as a layer of cells in the back of the eye. Therefore, it is essential to maintain the health and integrity of retinal photoreceptors.
3D Vascularized Human Ocular Tissue for Cell Therapy and Drug Discovery
Degeneration of retinal tissues occurs in many ocular disorders resulting in the loss of vision. Dysfunction and/or loss of Retinal Pigment Epithelium Cells (RPE) and disruption of the associated blood retinal barrier (BRB) tissue structures are linked with many ocular diseases and conditions including: age-related macular degeneration (AMD), Best disease, and retinitis pigmentosa. Engineered tissue structures that are able to replicate the function of lost BRB structures may restore lost vision and provide insight into new treatments and mechanisms of the underlying conditions.
Bone Marrow Mesenchymal Stem Cell (BMSC)-Derived Exosomes for the Treatment of Glaucoma
Glaucoma is one of the world’s leading causes of irreversible blindness. There is no cure and vision lost from glaucoma cannot be restored. Glaucoma is associated with fluid build-up in the eye resulting in an increased intraocular pressure (IOP). The pressure may cause damage to the optic nerve and lead to progressive degeneration of retinal ganglion cells (RGC) and vision loss. Currently, available treatments for glaucoma delay progression by reducing IOP, but no therapies exist to directly protect RGC from degradation and loss.
Machine Learning and/or Neural Networks to Validate Stem Cells and Their Derivatives for Use in Cell Therapy, Drug Delivery, and Diagnostics
Many biological and clinical procedures require functional validation of a desired cell type. Current techniques to validate rely on various assays and methods, such as staining with dyes, antibodies, and nucleic acid probes, to assess stem cell health, death, proliferation, and functionality. These techniques potentially destroy stem cells and risk contaminating cells and cultures by exposing them to the environment; they are low-throughput and difficult to scale-up.
Method for Reproducible Differentiation of Clinical Grade Retinal Pigment Epithelium Cells
The retinal pigment epithelium (RPE) is a cell monolayer with specialized functions crucial to maintaining the metabolic environment and chemistry of the sub-retinal and choroidal layers in the eye. Damage or disease causing RPE cell loss leads to progressive photoreceptor damage and impaired vision. Loss of RPE is observed in many of the most prevalent cases of vision loss, including age related macular degeneration (AMD) and Best disease.