Treatment and Prevention of Inflammatory Bowel Disease (IBD) using Mutant and Chimeric IL-13 Molecules
OC is a colitis induced by intrarectal administration of a relatively low dose of the haptenating agent oxazolone subsequent to skin sensitization with oxazolone. A highly reproducible and chronic colonic inflammation is obtained that is histologically similar to human ulcerative colitis. Studies show that Natural Killer T (NKT) cells, rather than conventional CD4+T cells, mediate oxazolone colitis and are the source of IL-13 as well as being activated by CD1- expressing intestinal epithelial cells. Tissue removed from ulcerative colitis patients were also shown to contain increased numbers of nonclassical NKT cells that produce markedly increased amounts of IL-13 and that in keeping with epithelial damage being a key factor in UC, these NKT cells are cytotoxic for epithelial cells. Building on their previous work, scientists at NIAID and FDA have shown that an Il-13 chimeric fusion protein linked to an effector molecule was able to prevent colitis in a mouse model of ulcerative colitis.
Available for licensing are methods for treating or preventing the inflammatory response of IBD by inhibiting the binding of IL-13 to IL-13 receptors on NKT cells. Additionally, these mutant and chimeric Il-13 molecules are able to block the chronic inflammatory response that results in fibrosis as seen in Crohn's disease. Preventing the inflammatory response of colitis by either modulating or blocking IL-13 and NKT cell activity continues to be an effective therapeutic approach in animal models of colitis with implications for the treatment of human ulcerative colitis and for the treatment of fibrosis associated with Crohn's disease.